Remark on Lomonosov’s lemma
HTML articles powered by AMS MathViewer
- by W. E. Longstaff
- Proc. Amer. Math. Soc. 88 (1983), 311-312
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695264-3
- PDF | Request permission
Abstract:
The famous lemma of V. I. Lomonosov states that if $\mathfrak {A}$ is a transitive algebra of operators acting on a complex, infinite-dimensional Banach space $X$ and $K$ is a nonzero compact operator on $X$, then there is an $A \in \mathfrak {A}$ such that 1 is an eigenvalue of AK. Lomonosov’s proof uses Schauder’s fixed point theorem. A proof, using only elementary techniques, is given for the case where $K$ has finite-rank.References
- C. K. Fong, E. A. Nordgren, M. Radjabalipour, H. Radjavi, and P. Rosenthal, Extensions of Lomonosov’s invariant subspace theorem, Acta Sci. Math. (Szeged) 41 (1979), no. 1-2, 55–62. MR 534499
- C. Laurie, E. Nordgren, H. Radjavi, and P. Rosenthal, On triangularization of algebras of operators, J. Reine Angew. Math. 327 (1981), 143–155. MR 631313, DOI 10.1016/S0024-3795(01)00288-9
- V. I. Lomonosov, Invariant subspaces of the family of operators that commute with a completely continuous operator, Funkcional. Anal. i Priložen. 7 (1973), no. 3, 55–56 (Russian). MR 0420305
- A. J. Michaels, Hilden’s simple proof of Lomonosov’s invariant subspace theorem, Adv. Math. 25 (1977), no. 1, 56–58. MR 500214, DOI 10.1016/0001-8708(77)90089-5
- Eric Nordgren, Heydar Radjavi, and Peter Rosenthal, Operator algebras leaving compact operator ranges invariant, Michigan Math. J. 23 (1976), no. 4, 375–377 (1977). MR 458200
- Carl Pearcy and Allen L. Shields, A survey of the Lomonosov technique in the theory of invariant subspaces, Topics in operator theory, Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 219–229. MR 0355639
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682, DOI 10.1007/978-3-642-65574-6
- Peter Rosenthal, Applications of Lomonosov’s lemma to non-self-adjoint operator algebras, Proc. Roy. Irish Acad. Sect. A 74 (1974), 271–281. Spectral Theory Symposium (Trinity College, Dublin, 1974). MR 361820
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 311-312
- MSC: Primary 47A15
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695264-3
- MathSciNet review: 695264