Riemann’s function has an exponential bound
HTML articles powered by AMS MathViewer
- by Paul R. Beesack PDF
- Proc. Amer. Math. Soc. 88 (1983), 313-316 Request permission
Abstract:
The Riemann function $\upsilon (t;x)$ of a hyperbolic characteristic initial value problem has been much used in recent years to provide upper bounds for functions which satisfy Gronwall-type integral inequalities. This note gives a direct proof of the fact that $\upsilon$ satisfies an inequality of the form $\upsilon (t;x) \leqslant \exp (\int _t^x {b(s)ds}$.References
- Ravi P. Agarwal, On an integral inequality in $n$ independent variables, J. Math. Anal. Appl. 85 (1982), no. 1, 192–196. MR 647567, DOI 10.1016/0022-247X(82)90034-8
- Paul R. Beesack, On some Gronwall-type integral inequalities in $n$ independent variables, J. Math. Anal. Appl. 100 (1984), no. 2, 393–408. MR 743329, DOI 10.1016/0022-247X(84)90089-1
- B. K. Bondge and B. G. Pachpatte, On some fundamental integral inequalities in $n$ independent variables, Bull. Inst. Math. Acad. Sinica 8 (1980), no. 4, 553–560. MR 615276
- B. K. Bondge and B. G. Pachpatte, On some partial integral inequalities in two independent variables, Funkcial. Ekvac. 23 (1980), no. 3, 327–334. MR 621537
- Jagdish Chandra and Paul W. Davis, Linear generalizations of Gronwall’s inequality, Proc. Amer. Math. Soc. 60 (1976), 157–160 (1977). MR 422735, DOI 10.1090/S0002-9939-1976-0422735-3
- A. M. Fink, Wendroff’s inequalities, Nonlinear Anal. 5 (1981), no. 8, 873–874. MR 628107, DOI 10.1016/0362-546X(81)90090-0
- D. Y. Kasture and S. G. Deo, Inequalities of Gronwall type in two independent variables, J. Math. Anal. Appl. 58 (1977), no. 2, 361–372. MR 437895, DOI 10.1016/0022-247X(77)90213-X
- B. G. Pachpatte, On some new integral and integrodifferential inequalities in two independent variables and their applications, J. Differential Equations 33 (1979), no. 2, 249–272. MR 542673, DOI 10.1016/0022-0396(79)90091-3
- B. G. Pachpatte, On some fundamental partial integral inequalities, J. Math. Anal. Appl. 73 (1980), no. 1, 238–251. MR 560945, DOI 10.1016/0022-247X(80)90030-X
- B. G. Pachpatte, On some new integral inequalities for nonselfadjoint hyperbolic partial integro-differential equations, J. Math. Anal. Appl. 76 (1980), no. 1, 58–71. MR 586643, DOI 10.1016/0022-247X(80)90058-X
- B. G. Pachpatte, On some partial integral inequalities in $n$ independent variables, J. Math. Anal. Appl. 79 (1981), no. 1, 256–272. MR 603390, DOI 10.1016/0022-247X(81)90023-8
- B. G. Pachpatte, On certain integral inequalities for partial differential and integral equations, An. Ştiinţ. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 27 (1981), no. 2, 365–374. MR 640763
- Donald R. Snow, A two independent variable Gronwall-type inequality, Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), Academic Press, New York, 1972, pp. 333–340. MR 0338537
- Donald R. Snow, Gronwall’s inequality for systems of partial differential equations in two independent variables, Proc. Amer. Math. Soc. 33 (1972), 46–54. MR 298188, DOI 10.1090/S0002-9939-1972-0298188-1
- E. Thandapani and Ravi P. Agarwal, On some new inequalities in $n$ independent variables, J. Math. Anal. Appl. 86 (1982), no. 2, 542–561. MR 652195, DOI 10.1016/0022-247X(82)90241-4
- Wolfgang Walter, Differential and integral inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 55, Springer-Verlag, New York-Berlin, 1970. Translated from the German by Lisa Rosenblatt and Lawrence Shampine. MR 0271508, DOI 10.1007/978-3-642-86405-6
- Cheh Chih Yeh, On some integral inequalities in $n$ independent variables and their applications, J. Math. Anal. Appl. 86 (1982), no. 2, 387–410. MR 652184, DOI 10.1016/0022-247X(82)90230-X
- Eutiquio C. Young, Gronwall’s inequality in $n$ independent variables, Proc. Amer. Math. Soc. 41 (1973), 241–244. MR 320493, DOI 10.1090/S0002-9939-1973-0320493-1
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 313-316
- MSC: Primary 26D15; Secondary 35L99
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695265-5
- MathSciNet review: 695265