On the degree of approximation of a class of functions by means of Fourier series
HTML articles powered by AMS MathViewer
- by S. M. Mazhar PDF
- Proc. Amer. Math. Soc. 88 (1983), 317-320 Request permission
Abstract:
In this paper degree of approximation of Lebesgue integrable functions by means of Fourier series is examined.References
- S. Aljančić, R. Bojanić, and M. Tomić, On the degree of convergence of Fejéer-Lebesgue sums, Enseign. Math. (2) 15 (1969), 21–28. MR 270046
- T. M. Flett, On the degree of approximation to a function by the Cesàro means of its Fourier series, Quart. J. Math. Oxford Ser. (2) 7 (1956), 81–95. MR 98271, DOI 10.1093/qmath/7.1.81
- A. S. B. Holland, B. N. Sahney, and J. Tzimbalario, On degree of approximation of a class of functions by means of Fourier series, Acta Sci. Math. (Szeged) 38 (1976), no. 1-2, 69–72. MR 410216
- Teresa Markiewicz, Sur l’approximation des fonctions par les moyennes de Nörlund des séries de Fourier et leurs conjuguées, Funct. Approx. Comment. Math. 8 (1980), 77–83 (French). MR 594123
- Leonard McFadden, Absolute Nörlund summability, Duke Math. J. 9 (1942), 168–207. MR 6379
- Nikola Obrechkoff, Sur la sommation des séries trigonométriques de Fourier par les moyennes arithmétiques, Bull. Soc. Math. France 62 (1934), 84–109 (French). MR 1505017
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 317-320
- MSC: Primary 42A10; Secondary 41A25
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695266-7
- MathSciNet review: 695266