Upper semicontinuous collections of continua in class $W$
HTML articles powered by AMS MathViewer
- by C. Wayne Proctor PDF
- Proc. Amer. Math. Soc. 88 (1983), 338-340 Request permission
Abstract:
A continuum is proven to be in Class $W$ if it can be decomposed into an upper semicontinuous collection of $C$-sets, each of which is contained in Class $W$, and if the upper semicontinuous decomposition space thus formed is in Class $W$.References
- H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1967), 241–249. MR 220249, DOI 10.4064/fm-60-3-241-249 G. A. Feuerbacher, Weakly chainable circle-like continua, Dissertation, Univ. of Houston, Houston, 1974.
- J. Grispolakis and E. D. Tymchatyn, Continua which admit only certain classes of onto mappings, Topology Proc. 3 (1978), no. 2, 347–362 (1979). MR 540501
- J. Grispolakis and E. D. Tymchatyn, Continua which are images of weakly confluent mappings only. I, Houston J. Math. 5 (1979), no. 4, 483–502. MR 567908
- J. Grispolakis and E. D. Tymchatyn, On confluent mappings and essential mappings—a survey, Rocky Mountain J. Math. 11 (1981), no. 1, 131–153. MR 612135, DOI 10.1216/RMJ-1981-11-1-131
- John G. Hocking and Gail S. Young, Topology, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. MR 0125557 W. T. Ingram, Atriodic tree-like continua and the span of mappings, Topology Proc. 1 (1976), 329-333. —, $C$-sets and mappings of continua, Topology Conf. (to appear).
- A. Lelek, Report on weakly confluent mappings, Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973) Lecture Notes in Math., Vol. 375, Springer, Berlin, 1974, pp. 168–170. MR 0358668
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
- David R. Read, Confluent and related mappings, Colloq. Math. 29 (1974), 233–239. MR 367903, DOI 10.4064/cm-29-2-233-239
- A. D. Wallace, The position of $C$-sets in semigroups, Proc. Amer. Math. Soc. 6 (1955), 639–642. MR 71709, DOI 10.1090/S0002-9939-1955-0071709-X
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 338-340
- MSC: Primary 54F20; Secondary 54C10
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695271-0
- MathSciNet review: 695271