Equivariant covering spaces and cohomology
HTML articles powered by AMS MathViewer
- by Stefan Waner PDF
- Proc. Amer. Math. Soc. 88 (1983), 351-356 Request permission
Abstract:
The Bredon cohomology of classifying spaces for categories of equivariant covering spaces is considered and shown to correspond to derived functors for the coefficient systems of the Bredon theory.References
- Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, Berlin-New York, 1967. MR 0214062
- Sören Illman, Equivariant singular homology and cohomology. I, Mem. Amer. Math. Soc. 1 (1975), no. issue 2, 156, ii+74. MR 375286, DOI 10.1090/memo/0156
- J. Peter May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1 (1975), no. 1, 155, xiii+98. MR 370579, DOI 10.1090/memo/0155
- Stefan Waner, A generalization of the cohomology of groups, Proc. Amer. Math. Soc. 85 (1982), no. 3, 469–474. MR 656126, DOI 10.1090/S0002-9939-1982-0656126-X —, Unoriented equivariant $RO(G)$-graded bordism, Univ. of Virginia, 1981, preprint.
- Stefan Waner, Classification of oriented equivariant spherical fibrations, Trans. Amer. Math. Soc. 271 (1982), no. 1, 313–324. MR 648095, DOI 10.1090/S0002-9947-1982-0648095-8 —, Three topological categories of $G$-sets, Univ. of Virginia, 1981, preprint.
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 351-356
- MSC: Primary 55N91; Secondary 54H15
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695274-6
- MathSciNet review: 695274