MINIMAL TOPOLOGIES OF PARA-\(H\)-CLOSED SPACES\(^1\)

MUHAMMAD I. ZAHID

ABSTRACT. A Hausdorff space is para-\(H\)-closed if every open cover has a locally-finite open refinement (not necessarily covering the space) whose union is dense in the space. We prove that minimal locally-\(H\)-closed, minimal locally-para-\(H\)-closed and minimal para-\(H\)-closed spaces are all minimal-Hausdorff. We also show that para-\(H\)-closed-closed spaces are \(H\)-closed.

Introduction. All spaces considered in this paper are assumed to be Hausdorff.

Definition 1. A Hausdorff space is para-\(H\)-closed if every open cover has a locally-finite open refinement (not necessarily covering the space) whose union is dense in the space.

Definition 2. A space is locally para-\(H\)-closed if every point has a neighbourhood whose closure is para-\(H\)-closed.

Definition 3. Let \(P\) be a property of topological spaces. A space is minimal-\(P\) if it has \(P\) and there is no coarser topology on the space having \(P\).

Definition 4. A space \(X\) is feebly compact if every locally-finite collection of open subsets of \(X\) is finite.

Theorem A. A space is feebly compact if and only if every countable filter-base of open subsets has an adherent point.

Theorem A is a well-known result.

Para-\(H\)-closed spaces and locally para-\(H\)-closed spaces were defined and studied by the author in [3]. It was shown by M. P. Berri [1] that every minimal locally compact space is compact. C. T. Scarborough and R. M. Stephenson [2] proved that every minimal paracompact space is compact. In this paper we improve these results and give some further analysis of minimal-Hausdorff and \(H\)-closed spaces.

Main results.

Theorem 1. A space is minimal-Hausdorff if and only if it is minimal-locally-\(H\)-closed.

Proof. Let \((X, \tau)\) be a minimal-locally-\(H\)-closed space. It suffices to show that \(X\) is \(H\)-closed. Let \(\tau\)' be the open filter generated by

\[
\{ \text{int}(\text{cl}(U)) : U \in \tau \text{ and } X \setminus \text{int}(\text{cl}(U)) \text{ is } H\text{-closed} \}.
\]

Received by the editors September 3, 1982. The paper was presented in the Annual Spring Topology Conference held at the U.S. Naval Academy, Annapolis, Maryland, March 11-13, 1982.

1980 Mathematics Subject Classification. Primary 54D25; Secondary 54D18, 54D99.

Key words and phrases. Para-\(H\)-closed, \(H\)-closed, feebly compact, minimal-Hausdorff, \(pHc\)-closed.

\(^1\)The results of this paper are a part of Chapter 3 of the author's doctoral dissertation written under the supervision of Dr. R. W. Heath.
Choose a point \(q \) in \(X \) and fix it. Define a new topology \(\tau' \) on \(X \) by the following neighbourhood systems. Let
\[
\tau'(q) = \{ O \cup F: q \in O \in \tau, F \in \Gamma \},
\]
and let
\[
\tau'(x) = \tau(x) = \{ O \setminus \{ q \} \in \tau: x \in O \}, \text{ for each } x \neq q.
\]
Then \((X, \tau') \) is \(H \)-closed. But \(\tau' \subset \tau \). Since \(\tau \) is minimal-locally-\(H \)-closed, \(\tau' = \tau \). Therefore \(X \) is \(H \)-closed.

Theorem 2. Every minimal-locally-para-\(H \)-closed space is minimal-Hausdorff.

As a corollary to Theorem 2, we get the following theorem.

Theorem 3. Every regular, minimal-locally-para-\(H \)-closed space is compact.

The proof of Theorem 2 is by the help of the following propositions.

Proposition 1. Every minimal-locally-para-\(H \)-closed space is para-\(H \)-closed.

Proof. Let \((X, \tau) \) be a minimal-locally-para-\(H \)-closed space. Choose \(q \) in \(X \) and fix it. Let \(\Gamma \) be the open filter generated by the set
\[
\{ \text{int(cl(U))}: U \in \tau \text{ and } X \setminus \text{int(cl(U))} \text{ is para-}\(H \)-closed} \}.
\]
Let
\[
\tau'(q) = \{ O \cup K: q \in O \in \tau, K \in \Gamma \},
\]
and let
\[
\tau'(x) = \tau(x) = \{ O \in \tau: x \in O \}, \text{ for each } x \neq q.
\]
Let \(\tau' \) be the topology generated by these neighbourhood systems. We show that \(\tau' \) is para-\(H \)-closed. Let \(\gamma \) be a \(\tau' \)-open cover of \(X \). Let \(O_q \in \tau(q), K \in \Gamma \) such that \(O_q \cup K \subset U \) for some \(U \in \gamma \). Also \(X \setminus K \) is para-\(H \)-closed. \(\text{int(cl(K))} = K \). Since \(X \setminus \text{int(cl(O_q \cup K))} \subset X \setminus K \) and is a closed domain, it is para-\(H \)-closed. Let
\[
\gamma' = \{ O \cap X \setminus \text{int} [\text{cl}(O_q \cup K)]: O \in \gamma \}.
\]
There is a locally-finite open refinement \(\lambda \) of \(\gamma' \) in the subspace \(X \setminus \text{int(cl(O_q \cup K))} \), whose union is dense in it. Let
\[
\xi = \{ V \cap (X \setminus \text{cl}(O_q \cup K)): V \in \lambda \} \cup \{ O_q \cup K \}.
\]
Then \(\xi \) is a locally-finite open refinement of \(\gamma \) in \(\tau' \), whose union is dense in \(X \). Therefore \((X, \tau') \) is para-\(H \)-closed. This shows that \((X, \tau) \) is para-\(H \)-closed.

Proposition 2. Every minimal-locally-para-\(H \)-closed space is \(H \)-closed.

Proof. Let \((X, \tau) \) be a minimal-locally-para-\(H \)-closed space. Suppose \(X \) is not \(H \)-closed. Then there exists an open filter-base \(\Gamma \) with no adherent point.

Choose \(q \) in \(X \). As before, define
\[
\tau'(q) = \{ O \cup F: q \in O \in \tau, F \in \Gamma \},
\]
\[
\tau'(x) = \tau(x) = \{ O \in \tau: x \in O \}, \text{ for each } x \neq q.
\]
Let \(\tau' \) be the topology generated by these neighbourhood systems. Then \(\tau' \subset \tau \), but \(\tau' \neq \tau \). There is an \(F_q \in \Gamma \) such that \(q \notin \text{cl}(F_q) \). Let \(O_q \in \tau(q) \) such that \(O_q \cap F_q = \emptyset \). Then \(O_q \notin \tau' \).

We show that \((X, \tau')\) is locally para-\(H\)-closed. By Proposition 1, \((X, \tau)\) is para-\(H\)-closed. Therefore \(\text{cl}_\tau(Q) \) is para-\(H\)-closed, for each \(Q \in \tau'(q) \). Also for each \(x \neq q \), there is \(U_x \in \tau'(x) \) such that \(q \notin \text{cl}_\tau(U_x) \). So \(\text{cl}_\tau(U_x) = \text{cl}_\tau(U_q) \) which is para-\(H\)-closed. This implies that \((X, \tau')\) is locally para-\(H\)-closed, which is a contradiction to the minimality of \((X, \tau)\). Therefore \(\Gamma \) has an adherent point. Therefore \(X \) is \(H\)-closed.

As a generalization of the theorem \([2]\) that every minimal-paracompact space is compact, we prove below that every minimal-para-\(H\)-closed space is minimal-Hausdorff.

Theorem 4. A Hausdorff space is minimal-Hausdorff if and only if it is minimal-para-\(H\)-closed.

Proof. Let \((X, \tau)\) be a minimal-para-\(H\)-closed space. Since every feeably compact, para-\(H\)-closed space is \(H\)-closed, it suffices to show that \((X, \tau)\) is feeably compact.

Suppose not. Then there is an open filter-base \(\Gamma = \{F_n: n \in \omega\} \) with no adherent point. Fix \(q \in X \). Define new neighbourhood systems as follows:

\[
\tau'(q) = \{O \cup F_n: q \in O \in \tau, n \in \omega\}
\]

and let

\[
\tau'(x) = \{O \in \tau : x \in O \in \tau\}, \quad \text{for each } x \neq q.
\]

Then \(\tau' \) is a Hausdorff topology on \(X \) and it is strictly coarser than \(\tau \).

We claim that \(\tau' \) is para-\(H\)-closed. Let \(\gamma \) be a \(\tau'\)-open cover \(X \). Let \(\lambda \) be a locally-finite open refinement of \(\gamma \) in \(\tau \), whose union is dense in \((X, \tau)\). Since \(\gamma \) is a \(\tau'\)-open cover of \(X \), there exists \(O_0 \in \tau(q) \) and an \(n \in \omega \), such that \(O_0 \cup F_n \subset U_0 \), for some \(U_0 \in \gamma \). Define \(\xi = \{V \setminus \text{cl}(F_n \cup O_0): V \in \lambda \} \cup \{F_n \cup O_0\} \).

Claim (i). \(\xi \) is locally-finite open in \((X, \tau')\).

Proof. Let \(x \in X \). Since \(\lambda \) is locally-finite open in \((X, \tau)\), there is \(O_x \) open neighbourhood of \(x \) in \(\tau \) such that \(O_x \) hits at most finitely many elements of \(\lambda \). If \(x = q \), then \(O_0 \cup F_n \in \tau'(q) \) and \(\xi \) is locally-finite at \(q \) with respect to \(\tau' \). If \(x \neq q \), then \(O_x \in \tau'(x) \) itself illustrates local-finiteness of \(\xi \) with respect to \(\tau' \).

Claim (ii). \(\cup \xi \) is dense in \((X, \tau')\).

Proof. \(\text{cl}_{\tau'}((\cup \lambda) \setminus (F_n \cup O_0)) \cup \text{cl}_{\tau}((F_n \cup O_0)) = \text{cl}_{\tau}(\cup \lambda) = X \). Therefore \(\xi \) is the required refinement of \(\gamma \). \((X, \tau')\) is thus para-\(H\)-closed, which contradicts the minimality of \(\tau \). Hence \((X, \tau)\) must be feeably compact.

Definition. A Hausdorff space is called **\(pHc \)-closed** if it is para-\(H\)-closed and is closed in any para-\(H\)-closed space containing it.

It is well known that every paracompact-closed space is compact \([2]\). The following theorem generalizes this result.
Theorem 5. A Hausdorff space is H-closed if and only if it is pHc-closed.

Bibliography

Department of Mathematics, University of Pittsburgh, Bradford Campus, Bradford, Pennsylvania 16701