Multiplier representations of discrete groups
HTML articles powered by AMS MathViewer
- by Adam Kleppner
- Proc. Amer. Math. Soc. 88 (1983), 371-375
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695278-3
- PDF | Request permission
Abstract:
Let $\sigma$ be a multiplier on the discrete group $G$. Extending theorems of Kaniuth and Thoma to the case of multiplier representations, we determine when the left regular $\sigma$ representation of $G$ has a type I subrepresentation, and when all the $\sigma$ representations of $G$ are type I.References
- Lawrence Baggett, A weak containment theorem for groups with a quotient $R$-group, Trans. Amer. Math. Soc. 128 (1967), 277–290. MR 220869, DOI 10.1090/S0002-9947-1967-0220869-9
- Larry Baggett and Adam Kleppner, Multiplier representations of abelian groups, J. Functional Analysis 14 (1973), 299–324. MR 0364537, DOI 10.1016/0022-1236(73)90075-x M. Duflo, Proc. Neptun Conference, Romania, 1980.
- A. K. Holzherr, Discrete groups whose multiplier representations are type $\textrm {I}$, J. Austral. Math. Soc. Ser. A 31 (1981), no. 4, 486–495. MR 638279
- Robert R. Kallman, Certain topological groups are type I. II, Advances in Math. 10 (1973), 221–255. MR 338256, DOI 10.1016/0001-8708(73)90109-6
- Eberhard Kaniuth, Der Typ der regulären Darstellung diskreter Gruppen, Math. Ann. 182 (1969), 334–339 (German). MR 260896, DOI 10.1007/BF01350709
- Adam Kleppner, The structure of some induced representations, Duke Math. J. 29 (1962), 555–572. MR 141735
- Adam Kleppner, Multipliers on abelian groups, Math. Ann. 158 (1965), 11–34. MR 174656, DOI 10.1007/BF01370393
- George W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311. MR 98328, DOI 10.1007/BF02392428
- B. H. Neumann, Groups with finite classes of conjugate subgroups, Math. Z. 63 (1955), 76–96. MR 72137, DOI 10.1007/BF01187925
- Masaru Osima, On the representations of groups of finite order, Math. J. Okayama Univ. 1 (1952), 33–61. MR 49894
- Shôichirô Sakai, On a characterization of type $\textrm {I}$ $C^{\ast }$-algebras, Functional Analysis (Proc. Conf., Irvine, Calif., 1966) Academic Press, London; Thompson Book Co., Washington, D.C., 1967, pp. 138–143. MR 0221296
- Martha Smith, Regular representations of discrete groups, J. Functional Analysis 11 (1972), 401–406. MR 0344902, DOI 10.1016/0022-1236(72)90062-6
- Keith F. Taylor, Group representations which vanish at infinity, Math. Ann. 251 (1980), no. 2, 185–190. MR 585964, DOI 10.1007/BF01536185
- Elmar Thoma, Über unitäre Darstellungen abzählbarer, diskreter Gruppen, Math. Ann. 153 (1964), 111–138 (German). MR 160118, DOI 10.1007/BF01361180
- Elmar Thoma, Eine Charakterisierung diskreter Gruppen vom Typ I, Invent. Math. 6 (1968), 190–196 (German). MR 248288, DOI 10.1007/BF01404824
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 371-375
- MSC: Primary 22D10; Secondary 20C25, 22D25
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695278-3
- MathSciNet review: 695278