Schrödinger operator methods in the study of a certain nonlinear P.D.E
HTML articles powered by AMS MathViewer
- by E. M. Harrell and B. Simon
- Proc. Amer. Math. Soc. 88 (1983), 376-377
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695279-5
- PDF | Request permission
Abstract:
We prove that $\Delta u + h{u^\alpha } = 0$ has no positive solutions for certain $h$, $\alpha$ by studying the linearized equation $(\Delta + h{u^{\alpha - 1}})\psi = e\psi$.References
- W. Allegretto, On the equivalence of two types of oscillation for elliptic operators, Pacific J. Math. 55 (1974), 319–328. MR 374628, DOI 10.2140/pjm.1974.55.319
- B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 525–598. MR 615628, DOI 10.1002/cpa.3160340406
- John Piepenbrink, Nonoscillatory elliptic equations, J. Differential Equations 15 (1974), 541–550. MR 342829, DOI 10.1016/0022-0396(74)90072-2
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
- Barry Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447–526. MR 670130, DOI 10.1090/S0273-0979-1982-15041-8
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 376-377
- MSC: Primary 35J60
- DOI: https://doi.org/10.1090/S0002-9939-1983-0695279-5
- MathSciNet review: 695279