EXISTENCE OF HARMONIC L^1 FUNCTIONS IN COMPLETE RIEMANNIAN MANIFOLDS

L. O. CHUNG

Abstract. We construct a complete Riemannian manifold which carries a nonconstant harmonic L^1 function.

First we consider the dimension 2 case. Let the manifold be $Z = \mathbb{R} \times S$ with parameterization (r, θ), $-\infty < r < \infty$ and $0 \leq \theta \leq 2\pi$, with identification of 0 and 2π for θ. On Z, endow the Riemannian metric $ds^2 = f(r)(dr^2 + d\theta^2)$ where f is a positive C^∞ function such that $f(r) = (r \log |r|)^{-2}$ for $|r| > 2$. Clearly the metric is complete, since

$$
\int_2^\infty f(r) \, dr = \int_2^\infty (r \log r)^{-1} \, dr = \infty = \int_{-\infty}^{-2} f(r) \, dr.
$$

On the other hand, the function $h(r, \theta) = r$ is harmonic since

$$
\Delta r = f(r)^{-1} \frac{\partial^2}{\partial r^2} r = 0.
$$

It is also L^1, since

$$
\int_{-\infty}^{\infty} f(r) \cdot |r| \, dr = \int_{-\infty}^{-2} + \int_{-2}^{2} + \int_{2}^{\infty} f(r) \cdot |r| \, dr < \infty
$$

by the simple observation that $\int_{-\infty}^{\infty} (r \log r)^{-2} r \, dr < \infty$.

For dimension $N > 2$, let T^{N-2} be the $N-2$ torus with a flat metric. Form the product manifold $Z \times T^{N-2}$ with the product metric. Then exactly the same argument as before goes.

Remark and acknowledgement. The above result was obtained quite a while ago and was announced in [1, p. 70]. In view of the result of Yau [2] that for $p \neq 1$, no complete Riemannian manifolds carry such a harmonic L^p function, we feel that this complements his result very nicely and may probably have some interest.

Our result was quoted recently in p. 135 of [3]. However, there is a misprint there. In [3] the volume of our example was asserted to be infinite; actually it is finite. We do not know what happens when the volume is infinite.

For their interest and encouragement the author expresses his appreciation to Professors L. Karp, L. Sario, and C. Wang.

Received by the editors August 20, 1982.

1980 Mathematics Subject Classification. Primary 31B05, 53C20.
REFERENCES

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA 27650