STRONG CONVERGENCE OF MARTINGALES
IN VON NEUMANN ALGEBRAS

MAKOTO TSUKADA

Abstract. In this paper we prove strong and L^1-norm convergence of martingales with respect to a faithful normal semifinite weight on a von Neumann algebra.

1. Introduction. Let M be a von Neumann algebra and φ be a faithful normal semifinite weight on M_+ (the positive cone of M). We denote by n_φ the set of all elements $x \in M$ with $\varphi(x^*x) < +\infty$ and by m_φ the linear span of $n_\varphi^* n_\varphi$. Then φ is uniquely extended to a linear functional on m_φ and we also denote it by φ. For a von Neumann subalgebra N of M, if there exists a faithful σ-weakly continuous projection ε of norm one from M onto N such that $\varphi(x) = \varphi(\varepsilon(x))$ for every $x \in m_\varphi$, we call ε the conditional expectation onto N with respect to φ. Takesaki [6] proved that there exists a unique conditional expectation onto N with respect to φ if and only if φ is semifinite on N (i.e., $N \cap m_\varphi$ is σ-weakly dense in N) and N is globally invariant under the modular automorphism group associated with φ.

Let M_* be the predual of M (i.e., the set of all σ-weakly continuous linear functionals on M). Suppose that N is a von Neumann subalgebra of M such that the conditional expectation ε onto N with respect to φ exists. Then we define $L^1(N; \varepsilon)$ as the set of all elements $\psi \in M_*$ with $\psi = \psi \circ \varepsilon$. For any $\psi \in M_*$ we define $\varepsilon^*(\psi) = \psi \circ \varepsilon$.

Theorem 1. $L^1(N; \varepsilon)$ is isometrically isomorphic to the predual of N. Moreover ε^* is a projection of norm one from M_* onto $L^1(N; \varepsilon)$.

Proof. Let N_* be the predual of N. For any $\psi \in N_*$ we define $\iota(\psi) = \psi \circ \varepsilon$. Then $\iota(\psi) \in L^1(N; \varepsilon)$ and

$$\|\psi\| = \sup_{\|x\| \leq 1} |\psi(x)| = \sup_{\|x\| \leq 1} |\psi(\varepsilon(x))| = \|\iota(\psi)\|,$$

because ε is a projection of norm one from M onto N. Moreover $\iota(\psi \uparrow N) = \psi$ for every $\psi \in L^1(N; \varepsilon)$. Hence ι is an isometrical isomorphism from N_* onto $L^1(N; \varepsilon)$. On the other hand for any $\psi \in M_*$ it follows that

$$\|\varepsilon^*(\psi)\| = \sup_{\|x\| \leq 1} |\psi(\varepsilon(x))| \leq \sup_{\|x\| \leq 1} |\psi(x)| = \|\psi\|.$$

Thus ε^* is of norm one. It is clear that ε^* is a projection from M_* onto $L^1(N; \varepsilon)$.

Received by the editors March 29, 1982 and, in revised form, September 28, 1982.
1980 Mathematics Subject Classification. Primary 47D25.
Key words and phrases. Martingale, von Neumann algebra, faithful normal semifinite weight, conditional expectation.

©1983 American Mathematical Society
0002-9939/82/0000-1078/$02.00

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Suppose that \(\varphi \) is a state. Goldstein [4] embedded \(M \) into \(M_* \) and defined \(L^1(N) \) as the closure of \(N \) in \(M_* \) for any von Neumann subalgebra \(N \) of \(M \). If the conditional expectation \(e \) onto \(N \) with respect to \(\varphi \) exists, \(L^1(N) \) coincides with \(L^1(N; e) \) defined as above. In that paper he proved the strong convergence of martingales. We generalize this to the case in which \(\varphi \) is a weight.

2. Increasing martingales. In this section we fix an increasing net \(\{N_a\} \) of von Neumann subalgebras of \(M \) such that the conditional expectation \(e_a \) onto \(N_a \) with respect to \(\varphi \) exists for every \(a \).

Theorem 2. The conditional expectation \(\epsilon_\infty \) onto \(\bigvee_{a} N_a \) with respect to \(\varphi \) exists and the following assertions are satisfied:

(i) \(\{\epsilon_{a}(x)\} \) converges to \(\epsilon_\infty(x) \) in the \(s^* \)-topology for every \(x \in M \);

(ii) \(\{\epsilon_\infty^*(\psi)\} \) converges to \(\epsilon_\infty^*(\psi) \) in the norm for every \(\psi \in M_*^\text{s} \).

Proof. Since \(\varphi \) is semifinite on \(N_a \) and \(N_a \) is globally invariant under the modular automorphism group associated with \(\varphi \) for every \(a \), \(\varphi \) is semifinite on \(\bigvee_{a} N_a \) and \(\bigvee_{a} N_a \) is globally invariant under the modular automorphism group. Hence there exists a unique conditional expectation \(\epsilon_\infty \) onto \(\bigvee_{a} N_a \) with respect to \(\varphi \). By the uniqueness of the conditional expectation \(\epsilon_a = \epsilon_\infty \circ \epsilon_\infty \) for every \(a \). Therefore to prove (i) and (ii) we may assume that \(M = \bigvee_{a} N_a \) without loss of generality.

(i) We first prove that if \(\epsilon_a(x) = 0 \) for every \(a \), then \(x = 0 \). Assume that \(\epsilon_\infty(x) = 0 \) for every \(\epsilon_\infty(x) = 0 \) for every \(a \). We fix an index \(a_0 \) and for any \(\psi \in M_* \) we put \(\hat{\psi} = \psi \circ \epsilon_{a_0} \). Then for any \(\alpha \geq a_0 \) and \(a \in N_a \) we have \(\hat{\psi}(ax) = \hat{\psi}(\epsilon_{a_0}(ax)) = \hat{\psi}(ae_{a_0}(x)) = 0 \). Therefore \(\psi(ax) = 0 \) for any \(a \in \bigcup_{a} N_a \). Since \(\bigcup_{a} N_a \) is \(\sigma \)-weakly dense in \(M \), we have \(\hat{\psi}(ax) = 0 \) for any \(a \in M \). Hence \(\psi(\epsilon_{a_0}(x*x)) = \hat{\psi}(x*x) = 0 \). Since \(\psi \in M_* \) is arbitrary, \(\epsilon_{a_0}(x*x) = 0 \), and since \(\epsilon_{a_0} \) is faithful, it follows that \(x = 0 \). Next we prove that \(\{\epsilon_{a}(x)\} \) converges to \(x \) in the \(\sigma \)-weak topology for any \(x \in M \). Since \(\{\epsilon_{a}(x)\} \) is uniformly bounded, for any subnet \(\{\epsilon_{a}(x)\} \) there exists a subnet \(\{\epsilon_{a}(x)\} \) which converges to some \(y \in M \) in the \(\sigma \)-weak topology. For every \(\alpha \), because of \(\sigma \)-weak continuity of \(\epsilon_{a} \), it follows that \(\epsilon_{a}(\epsilon_{a}(x)) \) tends to \(\epsilon_{a}(y) \) as \(\alpha \uparrow \) in the \(\sigma \)-weak topology. Here for sufficiently large \(\alpha \) we have \(\epsilon_{a}(\epsilon_{a}(x)) = \epsilon_{a}(x) \). Hence \(\epsilon_{a}(x) = \epsilon_{a}(y) \) for every \(\alpha \) and we have \(x = y \) by the fact that is proved above. Thus \(\{\epsilon_{a}(x)\} \) converges to \(x \) in the \(\sigma \)-weak topology. Moreover for any \(\psi \in M_*^\text{s} \) it follows that

\[
0 \leq \psi((\epsilon_{a}(x) - x)^*(\epsilon_{a}(x) - x)) = \psi(\epsilon_{a}(x)^*\epsilon_{a}(x)) - \psi(\epsilon_{a}(x)^*x) - \psi(x^*\epsilon_{a}(x)) + \psi(x)*x) \\
\leq \psi(\epsilon_{a}(x)^*x) - \psi(\epsilon_{a}(x)^*x) - \psi(x^*\epsilon_{a}(x)) + \psi(x)*x) \\
\rightarrow 0 \text{ (as } \alpha \uparrow \text{).}
\]

\(\psi((\epsilon_{a}(x) - x)(\epsilon_{a}(x) - x)^*) \) tends to 0 as \(\alpha \uparrow \) in the same way and we have (i).

(ii) Since \(\{\epsilon_{a}(x)\} \) converges to \(x \) in the \(\sigma \)-weak topology for any \(x \in M \), \(\{\epsilon_{a}(\psi)\} \) converges to \(\psi \) in the weak topology for any \(\psi \in M_* \). Therefore \(\bigcup_{a} L^1(N_a; e_a) \) is weakly dense in \(M_* \) and so in the norm. Hence we have (ii) by the standard argument.
Remark. The strong convergence of martingales was proved by Connes [2] for the case in which \(M \) is \(\sigma \)-finite, and by Lance [5] for the case in which \(\bigvee_{\alpha} N_\alpha \) is semifinite.

3. Decreasing martingales. In this section we fix a decreasing net \(\{ N_\alpha \} \) of von Neumann subalgebras of \(M \) such that the conditional expectation \(\epsilon_\alpha \) onto \(N_\alpha \) with respect to \(\varphi \) exists for every \(\alpha \).

Theorem 3. Suppose that \(\varphi \) is semifinite on \(\bigcap_\alpha N_\alpha \). Then the conditional expectation \(\epsilon_\infty \) onto \(\bigcap_\alpha N_\alpha \) with respect to \(\varphi \) exists and the following assertions are satisfied:

(i) \(\{ \epsilon_\alpha(x) \} \) converges to \(\epsilon_\infty(x) \) in the \(\sigma^* \)-topology for every \(x \in M \);

(ii) \(\{ \epsilon^*_\alpha(\psi) \} \) converges to \(\epsilon^*_\infty(\psi) \) in the norm for every \(\psi \in M^*_\ast \).

Proof. Since \(N_\lambda \) is globally invariant under the modular automorphism group associated with \(\varphi \) for every \(\alpha \), so is \(\bigcap_\alpha N_\alpha \), and since \(\varphi \) is semifinite on \(\bigcap_\alpha N_\alpha \), there exists a unique conditional expectation \(\epsilon_\infty \) onto \(\bigcap_\alpha N_\alpha \) with respect to \(\varphi \). By the uniqueness of the conditional expectation, \(\epsilon_\infty = \epsilon_\infty \circ \epsilon_\alpha \) for every \(\alpha \).

(ii) Let any \(\psi \in M^*_\ast \) be fixed. Then

\[
\| \epsilon^*_\alpha(\psi) - \epsilon^*_\infty(\psi) \| = \sup_{\| x \| \leq 1} | \psi(\epsilon_\alpha(x)) - \psi(\epsilon_\infty(x)) |
\]

for some \(x_\alpha \in N_\alpha \) with \(\| x_\alpha \| \leq 1 \). Since \(\{ x_\alpha \} \) is uniformly bounded, for any subnet \(\{ x_{\alpha'} \} \) there exists a subnet \(\{ x_{\alpha^{''}} \} \) which converges to some \(x_\infty \in M \) in the \(\sigma \)-weak topology. Then \(x_\infty \in \bigcap_\alpha N_\alpha \) and \(| \psi(x_{\alpha^{''}}) - \psi(\epsilon_\infty(x_{\alpha^{''}})) | \) tends to 0 as \(\alpha^{''} \uparrow \). Therefore it follows that \(\{ \epsilon^*_\alpha(\psi) \} \) converges to \(\epsilon^*_\infty(\psi) \) in the norm.

(i) It can be easily seen that \(\{ \epsilon_\alpha(x) \} \) converges to \(\epsilon_\infty(x) \) in the \(\sigma \)-weak topology in the same way as the proof of Theorem 2(i). For any \(\psi \in M^*_\ast \) we have

\[
\psi((\epsilon_\alpha(x) - \epsilon_\infty(x))(*(\epsilon_\alpha(x) - \epsilon_\infty(x)))) = \psi(\epsilon_\alpha(x) * \epsilon_\alpha(x)) - \psi(\epsilon_\alpha(x) * \epsilon_\infty(x))
\]

Here the second and third terms of the right-hand side tend to \(\psi(\epsilon_\infty(x) * \epsilon_\infty(x)) \) as \(\alpha \uparrow \). Moreover the first term is equal to \(\epsilon^*_\alpha(\psi)(\epsilon_\alpha(x) * x) \). Here \(\epsilon^*_\alpha(\psi) \) tends to \(\epsilon^*_\infty(\psi) \) as \(\alpha \uparrow \) in the norm and \(\{ \epsilon_\alpha(x) \} \) is uniformly bounded and converges to \(\epsilon_\infty(x) \) in \(\sigma \)-weak topology. So it follows that \(\epsilon^*_\alpha(\psi)(\epsilon_\alpha(x) * x) \) tends to \(\epsilon^*_\infty(\psi)(\epsilon_\infty(x) * x) = \psi(\epsilon_\infty(x) * \epsilon_\infty(x)) \) as \(\alpha \uparrow \). Thus \(\psi((\epsilon_\alpha(x) - \epsilon_\infty(x))(*(\epsilon_\alpha(x) - \epsilon_\infty(x)))) \) tends to 0 as \(\alpha \uparrow \).

In the above theorem the condition that \(\varphi \) is semifinite on \(\bigcap_\alpha N_\alpha \) is necessary. Let \(M = L^\infty \) and for \(\{ x_i \} \subseteq M^+ \) define \(\varphi((x_i)) = \Sigma_{i=1}^\infty x_i \). Then \(M \) is a von Neumann algebra and \(\varphi \) is a faithful normal semifinite weight on \(M^+ \). Now let \(N_\lambda \) be the set of all elements \(\{ x_i \} \subseteq M \) such that \(x_1 = x_2 = \cdots = x_n \). Then \(\{ N_\lambda \} \) is a decreasing sequence of von Neumann subalgebras of \(M \). We can easily see that the conditional
expectation ε_n onto N_n with respect to φ exists and for any $\{x_i\} \in M$, $\varepsilon_n(\{x_i\})$ is the sequence $\{y_i\}$ such that $y_i = (1/n) \cdot \sum_{k=1}^{n} x_k$ for $i = 1, \ldots, n$ and $y_i = x_i$ for $i = n + 1, \ldots$. Then $N_n = \{\lambda \cdot I : \lambda \in \mathbb{C}\}$, on which φ is not semifinite. Moreover $\{\varepsilon_n(\{x_i\})\}$ does not always converge in the σ-weak topology, because $\{(1/n) \cdot \sum_{k=1}^{n} x_k\}$ does not always converge.

In the increasing case (resp. the decreasing case) a sequence $\{x_\alpha\}$ is called a martingale if $x_\alpha \in N_\alpha$ for every α and $\varepsilon_\alpha(x_\beta) = x_\alpha$ whenever $\alpha \leq \beta$ (resp. $\alpha \geq \beta$). The sequence $\{\varepsilon_\alpha(x)\}$ in Theorem 2 (resp. Theorem 3) is an example of martingales and such a martingale is called simple. In the decreasing case any martingale $\{x_\alpha\}$ is essentially simple by considering $\{x_\alpha\}_{\alpha \geq \alpha_0}$ for any fixed α_0. In the increasing case, examining the proof of Theorem 2, we can easily see that a martingale is simple if and only if it is uniformly bounded. Similarly, L^1-martingales in M_* can be considered and it is seen that an increasing L^1-martingale is simple if it is relatively weakly compact in M_*.

The author would like to express his gratitude to Professor H. Umegaki for his valuable advice and constant encouragement. He also thanks Dr. F. Hiai for useful discussions and suggestions in preparing this manuscript.

References

Department of Information Sciences, Science University of Tokyo, Noda City, Chiba 278, Japan