MINIMAL IDEALS IN QUADRATIC JORDAN ALGEBRAS

NG SEONG NAM1 AND KEVIN McCrimmon2

Abstract. In associative and alternative algebras a minimal ideal is either trivial or simple. This is not known for quadratic Jordan algebras. In the present note we show that a minimal ideal is either trivial or \(\mathcal{D} \)-simple (possesses no proper ideals invariant under all inner derivations induced from the ambient algebra). In particular, the heart of any quadratic Jordan algebra is either trivial or \(\mathcal{D} \)-simple. Hearts have recently played an important role in Zelmanov's theory of prime Jordan algebras.

A unital quadratic Jordan algebra over an arbitrary ring of scalars \(\Phi \) is a \(\Phi \)-module \(J \) with unit element 1 and composition \(U_xy \) quadratic in \(x \) and linear in \(y \) such that the axioms

\[
\begin{align*}
(0.1) & \quad U_1 = 1, \\
(0.2) & \quad U_x V_{x,x} = V_{x,x} U_x = U_{U(x)y,x}, \\
(0.3) & \quad U_{U(x)y} = U_x U_y
\end{align*}
\]

hold strictly, where we introduce the notations \(V_{x,y}(z) = \{ x y z \} = U_{x,z}(y) \) for \(U_{x,z} = U_{x,z} - U_x - U_z \); the square is given by \(x^2 = U_x1 \), with linearization \(V_x(y) = x \circ y = U_{x,y}1 \). A (nonunital) quadratic Jordan algebra \(J \) has compositions \(U_{x,y} \) and \(x^2 \) satisfying certain axioms which guarantee that its unital hull \(\bar{J} = \Phi 1 + J \) is a unital quadratic Jordan algebra.

A derivation of a quadratic Jordan algebra is a linear transformation \(D \) such that

\[
D(x^2) = x \circ D(x), \quad D(U_{x,y}) = U_{D(x),x} y + U_x D(y).
\]

The inner derivations are given by

\[
D_{x,y} = [V_x, V_y] = V_{x,y} - V_{y,x}.
\]

An ideal \(I \lhd J \) is a subspace which is both an outer ideal (\(U_I J \subset I \), i.e. \(U_I J \subset I \) and \(V_I J \subset I \)) and an inner ideal (\(U_I \bar{J} \subset I \), i.e. \(U_I \bar{J} \subset I \) and \(I^2 \subset I \)). An outer ideal \(I \) is inner as soon as \(U_I \bar{J} \subset I \) for some spanning set \(\{ i \} \) for \(I \). An algebra is simple if it is not trivial and has no proper ideals; it is \(\mathcal{D} \)-simple if it is not trivial and has no proper ideals which are invariant under all derivations.

A subideal \(K \) of \(J \) is a subspace which is \(n \) steps removed (for some \(n \)) from being an ideal, \(K \lhd I_1 \lhd I_2 \lhd \cdots \lhd I_n \lhd J \). We are interested in how far a subideal is
from being an ideal. The question of whether a minimal ideal \(I \triangleleft J \) is simple (resp. \(\rho \)-simple) depends on whether there are any proper (resp. \(\rho \)-invariant) subideals \(K \triangleleft I \triangleleft J \); our goal will be to show that each such \(K \) would be an ideal in \(J \), therefore by minimality of \(I \) either \(K = I \) or \(K = 0 \), so \(K \) would be improper.

In general, if \(I, K \triangleleft J \) then their quadratic product \(U_IK \triangleleft J \) also. In particular, if \(I \triangleleft J \) then \(I^3 = U_II \triangleleft J \) also. We say \(I \) is trivial if \(I^3 = 0 \) (this is weaker than requiring \(I^2 = 0 \)) and idempotent if \(I^3 = I \). If \(I \) is a minimal ideal in \(J \), then the \(J \)-ideal \(I^3 \subset I \) can only be 0 or \(I \), so \(I \) is either trivial or idempotent.

1. Subideals. We gather here some technical results on subideals of idempotent ideals. These require some further properties of multiplication operators in Jordan algebras (see [2]):

\[
\begin{align*}
(1.1) & \quad V_x = U_{x^1} = V_{x,1} = V_{1,x}, \\
(1.2) & \quad \{xxz\} = x^2 \circ z, \quad \{xyz\} + \{yxz\} = (x \circ y) \circ z, \\
(1.3) & \quad V_{zz} = V_{z^2}, \quad V_{zy} = V_{z,y} - V_{z,y}, \quad 2U_z = V_z^2 - V_{zz}, \\
(1.4) & \quad V_{U(x)y,z} = V_{x, U(y)z}, \\
(1.5) & \quad V_{U(x)y,z} = V_{x, y} - U_xU_yU_z, \quad V_{U(x)y} = V_{x,y} - U_{x,y}U_x, \\
(1.6) & \quad V_{U(x)y} = V_{x,y} - U_{x,y}V_x = V_{x,y} - U_{x,y}U_x, \\
(1.7) & \quad V_{x,y}U_z + U_zV_{x,y} = U_{(xyz)}U_z, \quad VU_z + U_zV_x = V_{x^*}U_z, \\
(1.8) & \quad U_xU_yU_z + U_zU_xU_y + V_{x,y}U_{z,y} = U_{(xyz)}U_z + U_{(xyz)}U_z.
\end{align*}
\]

We always have an expression for the \(I \)-ideal generated by \(K \).

1.9 Lemma. The ideal in \(J \) generated by a subspace \(K \) is the outer hull \(\overline{K} = \sum_{n=0}^{\infty} U_I^nL \) of \(L = K + UKJ \). If \(K \triangleleft I \triangleleft J \), then \(L \triangleleft I \) with \(U_I\overline{K} \subset K \).

Proof. Clearly \(K \) and \(L \) generate the same ideal in \(J \) since this must contain \(U_K\overline{I} \) by \(I \)-innerness. Clearly \(\sum U_I^nL \) is an outer ideal in \(J \) containing \(L \), and it is an inner ideal, since for the spanning elements \(t = U_{a_1} \cdots U_{a_s} (s = k \text{ or } U_k a. k \in K, a_i \in \overline{I}) \) we have \(U_I\overline{I} = U_{a_1} \cdots U_{a_s}U_{a_1} \cdots U_{a_s} \) (by (0.3)) \(\subset U_I^nU_I\overline{I} \) (since \(U_I = U_K \text{ or } U_KU_IU_K \) by (0.3)). Thus \(K \) is as given.

\(L \) is \(I \)-outer since by (1.7), (1.8) \(V_I(U_K\overline{I}) = (U_{I \circ K} - U_KV_I) \overline{I} \subset U_K\overline{I} \) (by \(K \triangleleft I \)) and \(U_I(U_K\overline{I}) = (U_{I \circ K} + U_{I(K)K} - U_KU_I - (a_{I \circ K} - U_KV_I)\overline{I} \subset U_K\overline{I} \) (by \(K \triangleleft I \)). To see \(L \) is \(I \)-inner it will suffice to show \(U_I\overline{I} \subset K \). \(U_I\overline{I} \) is spanned by all \(U_{x,y} \) and \(U_{x,y} \) for \(s, t \) of the form \(k \text{ or } U_k a \) \(\text{or } k \in K, a \in \overline{I} \). Here \(U_k\overline{I} \). \(U_{U(k)a}\overline{I} = U_{U_k\overline{I}}\overline{I} \subset U_I\overline{I} \) (by (0.3) and \(k \in I \triangleleft J \)). \(U_k\overline{I} \). \(U_{U(k)a}\overline{I} \overline{I} = U_{U_k\overline{I}U_k\overline{I}} \overline{I} \) (by linearized (0.2)) \(\subset U_{x,y} \overline{I} \overline{I} \) for all \(k \triangleleft I \) and \(k \text{ or } U_k a \text{ fall in } K \triangleleft I \).

In order to show \(U_I\overline{I} \overline{K} \subset K \), we need to know how \(U_I + V_{I,j} \) interacts with \(U_I \).

1.10 Lemma. If \(I = I^3 \triangleleft J \) and \(\mathcal{W} \) denotes the unital subalgebra of \(\text{End}(J) \) generated by \(U_I, V_{I,j}, V_I \), then

\[
(1.11) \quad V_{I,j} + V_{I,j} \subset V_{I,j}.
\]
\[(1.12) \quad U_I V_J \subset \mathfrak{M} V_{I,J},\]
\[(1.13) \quad \{U_I + V_{I,J}\} U_J \subset \mathfrak{M} \{U_I + V_{I,J}\} \{V_J + 1\},\]
\[(1.14) \quad 2(U_I + V_{I,J}) V_J^2 \subset \mathfrak{M} \{U_I + V_{I,J}\} \{D_{J,J} + V_J + 1\}.\]

Proof. For convenience we may assume \(J = \hat{J}\) is unital and avoid a plethora of hats. Then for (1.11) we have \(V_J = V_{I,J} \subset V_{I,J} \) by (1.1), and \(V_{I,J} = V_{U(I)J} \subset -V_{U(I)J} + V_{I,J} \) (by linearized (1.4)) \(\subset V_{I,J} \) (since \(I < J\)), and, dually, \(V_J \subset V_{I,J} \).

For (1.12) we have for \(x \in I, a \in J\) that \(U_x V_a = U_x U_a \) (by (1.1)) = \(V_x a V_x \) - \(V_{U(x)a} \) (by linearized (1.7)) \(\subset \mathfrak{M} U_{I,J} \subset \mathfrak{M} \{V_J V_J - V_{I,J}\} \) (by (1.13)) \(\subset \mathfrak{M} \{V_{I,J} + V_{I,J} \} \) (by (1.11)). For \(U_I U_J \) in (1.13) we have for \(x, y \in I, a \in J\) that \(V_{x,y} a = U_{a,x} V_{x,a} - U_{U(a)y,x} \) (by (1.6)) \(\subset \mathfrak{M} U_{I,J} - U_{I,J} \subset \mathfrak{M} \{V_J V_J - V_{I,J}\} \) (by (1.11)) \(\subset \mathfrak{M} \{V_{I,J} + V_{I,J} \} \) (by (1.11)).

For \(V_{I,J} U_J \) in (1.14) we have for \(x, y \in I, a \in J\) that \(U_{x,y} V_a = U_{a,x} V_{x,a} - U_{U(a)y,x} \) (by (1.7)) \(\subset \mathfrak{M} U_{I,J} \subset \mathfrak{M} \{V_J V_J - V_{I,J}\} \) (by (1.13)).

1.15 Remark. In some cases a subideal is necessarily an ideal: an idempotent subideal is an ideal. This holds, in particular, if the subideal \(A\) has a covering family of idempotents \(\{e_i\}\) (\(K = \sum U_e K\)), thus if \(K\) has a unit (in this case \(K\) is a direct summand).
Proof. As usual, we may assume \(J \) is unital. By (1.9) we have \(\overline{K} = \sum U_j^nL \) for \(L = K + U_jJ \lhd I \) with \(U_j \overline{I} \subset K \). We will show that in both cases \(U_jU_j \overline{K} \subset L \). This shows \(\overline{K} \) is proper if \(K \) is: if \(\overline{K} = I \), then by idempotence \(I = U_jU_jI = U_jU_j \overline{K} \subset L \) forces \(I = L \), hence \(I = U_jI = U_jI \subset K \) forces \(K = I \). By (0.4) \(\overline{K} \) is invariant under any derivation that \(K \) is.

In the notation of (1.10) we have

\[
(*) \quad U_j \overline{K} = \sum U_jU_j^nL \subset \sum 2 \mathfrak{M}(U_j + V_{I,\gamma})V_j^nL
\]

using (1.13) to convert \(U_j \)'s into \(V_j \)'s, and then using (1.7) to move the resulting \(V_j \)'s to the right. In case (ii) \(K \) (and hence \(L \) too, using (1.7)) is invariant under \(V_j \), so \((*) \) yields \(U_j \overline{K} \subset \sum \mathfrak{M}(U_j + V_{I,\gamma})L \subset L \) since \(L \lhd I \), and \(U_j \overline{K} \subset L \) in this case. In case (i) \((*) \) yields only \(U_j \overline{K} \subset \mathfrak{M}(U_j + V_{I,\gamma})(L + V_jL) \): here \(I = 2I \) implies \(U_j + V_{I,\gamma} \subset 2(U_j + V_{I,\gamma}) \), so we can use (1.14) repeatedly to convert higher powers \(V_j^nL \) \(m > 2 \) into lower powers plus \(D_{I,\gamma} \)'s, then using \([D, V_j] = V_{D,\gamma} \) from (0.4) to move the resulting \(D \)'s to the right, and then absorbing these into \(L \) since \(D(L) = D(K) + D(U_kJ) \subset D(K) + U_kD(J) \) (by (0.4)) \(\subset K + U_kJ = L \) (by the assumed invariance of \(K \) under \(D_{I,\gamma} \)). But then \(U_j \overline{K} \subset \mathfrak{M}(L + V_jL) \subset L + V_jL \) (because \(L \lhd I \) and \(\mathfrak{M}V_j \subset (V_j + 1)\mathfrak{M} \) since \(U_jV_j \subset \mathfrak{M} \) by (1.12), \(V_jV_j \subset \mathfrak{M} \) by (1.11), and \([V_{I,\gamma}, J] = V_{(I,\gamma)} - V_{I,\gamma} \subset \mathfrak{M} \) by (1.7), (1.2), (1.11), so \(U_jU_j \overline{K} \subset U_j(L + V_jL) \subset \mathfrak{M}L \) (by (1.12)). Thus in both cases we have \(U_jU_j \overline{K} \subset L \), as desired. \(\square \)

In characteristic 2 the maps \(D_{\gamma} = V_{\gamma} \) are derivations too.

2.2 Lemma. If \(2I = 0 \) then \(V_a \) induces a derivation of \(I \) for each \(a \in J \smallsetminus I \).

Proof. \(V_a \) leaves \(I \lhd J \) invariant, and on \(I \) it satisfies conditions (0.4) since \(D(x^2) = x^2 \circ a = x \circ (x \circ a) - 2U_2a \) (by (1.3)) \(= x \circ (x \circ a) \) (since \(2U_2a \subset 2I = 0 \)) \(= x \circ D(x) \) and \(D(U_x y) = V_x U_x y = \{ -U_x V_a + U_{a \circ x, \gamma} \} y \) (by (1.7)) \(= U_{V_a} D(y) + U_{D_{(x,\gamma)}} y \) (since \(a \circ y = a \circ y \) for \(y \in I \) because \(2I = 0 \)). \(\square \)

Now we can prove our main result about subideals of idempotent ideals.

2.3 Theorem. A minimal ideal \(I \lhd J \) in a quadratic Jordan algebra is either trivial (\(I^3 = 0 \)) or \(\mathfrak{P} \)-simple (indeed, has no proper ideals invariant under those inner derivations induced on \(I \) by \(J \)).

Proof. In order to apply 2.1 we must show \(2I = I \) or \(0 \); but \(2I \) is again an ideal of \(J \), so by minimality of \(I \) it can only be \(I \) or \(0 \). \(\square \)

The heart of a Jordan algebra is the intersection \(\mathfrak{K}(J) = \cap I \) of all nonzero ideals \(I \). If it is nonzero it is the unique minimal ideal, contained in all other ideals, so

2.4 Theorem. The heart \(\mathfrak{K}(J) \) of a quadratic Jordan algebra \(J \) is either trivial or \(\mathfrak{P} \)-simple. \(\square \)

In Zelmanov's work [5] the heart played a major role: the heart of an \(i \)-exceptional prime algebra was actually simple with capacity, from which it follows that the prime \(i \)-exceptional algebra was itself essentially a simple Albert algebra.

The result we want, of course, is that a minimal ideal is trivial or (ordinary) simple. This holds for associative and alternative algebras by work of Slater and
Zhevlakov [4]. It can be deduced for certain Jordan algebras from Block's characterization [1] of differentiably simple algebras.

In [3] it was shown that the middle nucleus and center coincide for -semiprime linear Jordan algebras; since -simple algebras are -semiprime, we get

2.5 Proposition. If is a nontrivial minimal ideal in a linear Jordan algebra, then \(N_m(I) = C(I) \).

References

2. N. Jacobson, Structure theory of Jordan algebras, Univ. of Arkansas Lecture Notes, Fayetteville, 1981.

School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia

Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903