A PROOF OF A FORMULA
IN FOURIER ANALYSIS ON THE SPHERE

JIN-GEN YANG

ABSTRACT. A short and elementary proof of a useful formula in spherical harmonic analysis is provided.

In [3] Sherman proved an integral formula for eigenfunctions of the Laplacian on the sphere \(S^n \). He developed a certain theory of Fourier analysis on the basis of this formula. The purpose of this note is to give an elementary short proof of Sherman's formula.

Let \(a = (0, \ldots, 0, 1) \in S^n \), \(B = \{(x_1, \ldots, x_{n+1}) \in S^n \mid x_{n+1} = 0\} \). \(a \) is the "north pole" and \(B \) is the "equator". For any integer \(k > 0 \) and \(b \in B \), define

\[
e_{b,k}(s) = (a + ib, s)^k, \quad s \in S^n,
\]

and

\[
f_{b,k}(s) = \text{sgn}(s, a)^{n-1}(a + ib, s)^{-k-n+1}, \quad s \in S^n - B,
\]

where \((\cdot, \cdot)\) is the Euclidean inner product, \(i = \sqrt{-1} \). Let \(db \) be the normalized Euclidean measure on \(B \).

Theorem (Sherman, Lemma 3.9 of [3]).

\[
\int_B e_{b,k}(s)f_{b,k}(s') \, db = P_k((s, s'))
\]

for all \(s \in S^n \), \(s' \in S^n - B \) and \(k > 0 \), where \(P_k \) is a polynomial of degree \(k \) with \(P_k(1) = 1 \), called the (normalized) Gegenbauer polynomial.

Formula (1) corresponds to formula (1.9) in [3].

Proof. Denote the left-hand side of (1) by \(F(s, s') \). Since \(F(-s, -s') = F(s, s') \) we may assume \(\text{sgn}(s', a) = 1 \). Let \(u_\phi \) be the rotation represented by

\[
\begin{bmatrix}
1 \\
\vdots \\
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{bmatrix}.
\]

If \(F(u_\phi s, u_\phi s') = F(s, s') \) for all \(\phi \) such that \((u_\phi s', a) > 0 \), then the proof of (1) will be reduced to the case \(s' = a \) (in which (1) is the standard integral formula for the
Gegenbauer polynomial, cf. Theorem 7 of [2] or Lemma 4.2 of [3]) because we can always find some rotation u of B and some u_ϕ such that $u_\phi u s' = a$, and it is obvious that $F(u s, u s') = F(s, s')$. Hence it is enough to prove $\partial F(u_\phi s, u_\phi s')/\partial \phi = 0$.

Any point $b \in B$ can be written in the form

$$b = (c_1 \cos \theta, c_2 \cos \theta, \ldots, c_{n-1} \cos \theta, \sin \theta, 0)$$

where $c_1^2 + \cdots + c_{n-1}^2 = 1$. Let

$$g(c, \theta, \phi, s) = i \cos \theta \sum_{j=1}^{n-1} c_j s_j + i \sin \theta (s_n \cos \phi - s_{n+1} \sin \phi) + (s_n \sin \phi + s_{n+1} \cos \phi).$$

That means $e_{b,k}(u_\phi s) = [g(c, \theta, \phi, s)]^k$ and $f_{b,k}(u_\phi s') = [g(c, \theta, \phi, s')]^{-k-n+1}$. Then for all integers m,

$$\frac{\partial (g^m)}{\partial \theta} = mg^{m-1} \left[-i \sin \theta \sum_{j=1}^{n-1} c_j s_j + i \cos \theta (s_n \cos \phi - s_{n+1} \sin \phi) \right].$$

$$\frac{\partial (g^m)}{\partial \phi} = mg^{m-1} \left[i \sin \theta (-s_n \sin \phi - s_{n+1} \cos \phi) + (s_n \cos \phi - s_{n+1} \sin \phi) \right].$$

Hence we obtain a useful relation

$$i \frac{\partial (g^m)}{\partial \phi} - \cos \theta \frac{\partial (g^m)}{\partial \theta} = mg^m \sin \theta.$$ (2)

Therefore

$$\frac{\partial F(u_\phi s, u_\phi s')}{\partial \phi} = \frac{\partial}{\partial \phi} \int_B [g(c, \theta, \phi, s)]^k [g(c, \theta, \phi, s')]^{-k-n+1} db$$

$$= A \int_{c \in S^{n-2}} dc \int_{\pi/2}^{\pi/2} \left[\frac{\partial (g(c, \theta, \phi, s))^k}{\partial \phi} g(c, \theta, \phi, s')^{-k-n+1} \right] \cos^{n-2} \theta d\theta$$

$$+ g(c, \theta, \phi, s)^k \left[\cos \theta \frac{\partial (g(c, \theta, \phi, s')^{-k-n+1})}{\partial \phi} \right]^{-k-n+1} + g(c, \theta, \phi, s)^k$$

$$\times \left[\cos \theta \frac{\partial (g(c, \theta, \phi, s')^{-k-n+1})}{\partial \phi} \right]$$

$$- (k + n - 1) \sin \theta g(c, \theta, \phi, s')^{-k-n+1} \right] \times \cos^{n-2} \theta d\theta$$
by using (2). Here dc is the ordinary Euclidean measure on S^{n-2}, A is constant. We can easily see that the integrand is $\partial Q/\partial \theta$, where

$$Q = -i \left[g(c, \theta, \phi, s)^k g(c, \theta, \phi, s')^{-k-n-1} \cos^{n-1} \theta \right].$$

Therefore the integral is zero.

ACKNOWLEDGEMENT. The author would like to thank Professor Sigurdur Helgason for correcting some mistakes and giving valuable advice.

REFERENCES

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139.