Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A family of polynomials with concyclic zeros
HTML articles powered by AMS MathViewer

by Kenneth B. Stolarsky
Proc. Amer. Math. Soc. 88 (1983), 622-624
DOI: https://doi.org/10.1090/S0002-9939-1983-0702287-4

Abstract:

Expand $E\left ( z \right ) = {({e^z} - 1)^m}$ by the binomial theorem, and replace every $exp\left ( {{k_z}} \right )$ by its approximation ${\left ( {1 + k{n^{ - 1}}z} \right )^n}$. The resulting polynomial has all of its zeros on a circle of radius $r$ centered at $- r$, where $r = n/m$.
References
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C15, 33A10
  • Retrieve articles in all journals with MSC: 30C15, 33A10
Bibliographic Information
  • © Copyright 1983 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 88 (1983), 622-624
  • MSC: Primary 30C15; Secondary 33A10
  • DOI: https://doi.org/10.1090/S0002-9939-1983-0702287-4
  • MathSciNet review: 702287