A NOTE ON THE STRONG MAXIMAL FUNCTION

RICHARD J. BAGBY

Abstract. Given a nonnegative measurable function f on R^2 which is integrable over sets of finite measure, we construct a new function g with the same distribution function as f such that the strong maximal function of g has the same local integrability properties as its Hardy-Littlewood maximal function.

The Hardy-Littlewood maximal operator in R^n is defined by

$$Mf(x) = \sup \left\{ \frac{1}{|Q|} \int_{Q} |f| : x \in Q \right\},$$

where Q is a cube in R^n with edges parallel to the coordinate axes. For f with bounded support, well-known arguments show that Mf is locally integrable provided $\int |f| \log^+ |f|$ is integrable; E. M. Stein [4] proved that this condition on f is also necessary.

The strong maximal function $M_n f$ is defined in R^n similarly; the cubes are replaced by rectangles of arbitrary shape but oriented with edges parallel to the coordinate axes. Jessen, Marcinkiewicz, and Zygmund [3] noted $M_n f$ could be dominated by the composition of one-dimensional maximal operators; accordingly, $M_n f$ is integrable over sets of finite measure provided $\int |f| \left(\log^+ |f| \right)^n$ is integrable, and no weaker local integrable condition on f is sufficient.

It has been conjectured by Fava, Gatto, and Gutiérrez [2] that this condition is also necessary; we became interested in this problem during the preparation of [1]. We show that the conjecture is false by constructing a rich class of functions on R^2 for which averages over rectangles are dominated by averages over squares. Consequently, local integrability properties of $M_2 f$ imply nothing stronger than the identical properties for Mf.

Theorem. Let f be a nonnegative measurable function on R^2 which is integrable over sets of finite measure. Then there is a function g on R^2 such that

$$| \{ x : f(x) > \lambda \} | = | \{ x : g(x) > \lambda \} | , \quad 0 < \lambda < \infty,$$

and

$$M_2 g(x) \leq \frac{5}{4} Mg\left(\frac{x}{3} \right) + \sup_{|E| \leq 1} \int_{E} g , \quad a.e. \ x \in R^2.$$
THE STRONG MAXIMAL FUNCTION

PROOF. First we introduce some notation. We define

\[Q = \{ x \in \mathbb{R}^2 : |x_1| \leq 3 \text{ and } |x_2| \leq 3 \}, \]

\[L_t = \{ x \in \mathbb{R}^2 : x_2 - x_1 = t \}, \]

\[D_t = \{ x \in \mathbb{R}^2 : |x_2 - x_1| \leq t \}, \]

\[A_t = \{ x \in D_t : |x_1 + x_2| \leq 2 \}. \]

For \(x \notin L_0 \), we let \(Q_x \) be the square with one corner at \(x \) and one diagonal along \(L_0 \).

We define a function \(t(\lambda) \), \(0 < \lambda < \infty \), by

\[t(\lambda) = \frac{1}{\lambda} \left| \left\{ x \in \mathbb{R}^2 : f(x) > \lambda \right\} \right| \]

so that \(|A_{t(\lambda)}| = \left| \left\{ x : f(x) > \lambda \right\} \right| \). We now define our function \(g \) by

\[g(x) = \int_{t_0}^{\infty} \chi_\lambda(x) \, d\lambda, \]

where \(\chi_\lambda \) is the characteristic function of \(A_{t(\lambda)} \). It is then clear that the first condition on \(g \) is satisfied; we direct our attention to estimating \(M_2 g \).

For the remainder of our argument, \(x \) will be a fixed point not in \(L_0 \) and \(R \) will be a generic rectangle containing \(x \) and having its sides parallel to the coordinate axes. We have

\[\int_R g = \int_0^{\infty} |A_{t(\lambda)} \cap R| \, d\lambda. \]

Choosing \(\lambda_0 = \inf \{ \lambda : |A_{t(\lambda)}| \leq 1 \} \), we use \(|A_{t(\lambda)} \cap R| \leq |R| \) for \(\lambda < \lambda_0 \) and show that for \(|A_t| \leq 1 \),

\[(*) \quad 4 |A_t \cap R| / |R| \leq |A_t| + 5 |Q_x \cap 3A_t| / |Q_x|. \]

Assuming the validity of \((*)\),

\[\frac{1}{|R|} \int_R g \leq \lambda_0 + \frac{1}{4} \int_{\lambda_0}^{\infty} |A_{t(\lambda)}| \, d\lambda + \frac{5}{4} \int_{Q_x} |Q_x \cap 3A_{t(\lambda)}| \, d\lambda. \]

Since

\[\lambda_0 + \int_{\lambda_0}^{\infty} |A_{t(\lambda)}| \, d\lambda = \sup_{|E| \leq 1} \int_E g \]

and

\[\frac{1}{|Q_x|} \int_0^{\infty} |Q_x \cap 3A_{t(\lambda)}| \, d\lambda = \frac{1}{|Q_{x/3}|} \int_0^{\infty} |Q_{x/3} \cap A_{t(\lambda)}| \, d\lambda \]

\[= \frac{1}{|Q_{x/3}|} \int_{Q_{x/3}} g \leq Mg(x/3), \]

this yields the desired conclusion.

We establish \((*)\) using elementary geometry. Calling \(\mu E \) the one-dimensional measure of \(E \cap L_t \), we first observe that \((\mu_0 R) / |R| \leq (\mu_0 Q_x) / |Q_x| \).
To see this, we note that we can change one side of R at a time until Q_x is reached without decreasing $(\mu_0 R)/\|R\|$ at any stage. Next, note that for $|t|$ small the ratio $(\mu_0 R)/\|R\|$ is maximized by a square nearly the same as Q_x. Considering extreme cases shows that for $|3t|\leq |x_2 - x_1|$, we have $4(\mu_0 R)/\|R\| \leq 9(\mu_0 Q_x)/\|Q_x\|$ and, hence,

$$4\ |D_t \cap R|/\|R\| \leq 9\ |D_t \cap Q_x|/\|Q_x\|, \quad 0 < 3t \leq |x_2 - x_1|.$$

For this last range of t, $|D_t \cap Q_x| \leq 8\ |D_{3t} \cap Q_x|$, while for all larger t we have $Q_x \subset D_{3t}$. Consequently,

$$4\ |D_t \cap R|/\|R\| \leq 5\ |D_{3t} \cap Q_x|/\|Q_x\|, \quad 0 < t < \infty.$$

For $x \in Q$ we have $Q_x \subset Q$ and $D_{3t} \cap Q = Q \cap 3A_t$; hence

$$4\ |A_t \cap R|/\|R\| \leq 4\ |D_t \cap R|/\|R\| \leq 5\ |D_{3t} \cap Q_x|/\|Q_x\| = 5\ |Q_x \cap 3A_t|/\|Q_x\|.$$

For $x \notin Q$ and $|A_t| \leq 1$ the analysis is trivial. Considering extreme cases shows every R meeting the complement of Q satisfies $4\ |A_t \cap R|/\|R\| \leq 4t = |A_t|$, and the proof is complete.

REFERENCES

DEPARTMENT OF MATHEMATICAL SCIENCES, NEW MEXICO STATE UNIVERSITY, LAS CRUCES, NEW MEXICO 88003