Conformal inequivalence of annuli and the first-order theory of subgroups of $\textrm {PSL}(2, \textbf {R})$
HTML articles powered by AMS MathViewer
- by Lee A. Rubel
- Proc. Amer. Math. Soc. 88 (1983), 679-683
- DOI: https://doi.org/10.1090/S0002-9939-1983-0702298-9
- PDF | Request permission
Abstract:
An algebraic proof is given of the classical fact that two different concentric circular annuli $A(r)$ and $A(s)$ are conformally inequivalent, where $A(r) = \{ z \in {\mathbf {C}}:1 < \left | z \right | < r\}$. Indeed, it is shown that the covering groups of these annuli are not elementarily equivalent in the context of ${\text {PSL}}(2,{\mathbf {R}})$. Considering the universal covering surface as $U$, the upper half-plane, the covering group of a bounded plane domain is naturally contained in ${\text {PSL}}(2,{\mathbf {R}})$ as the group of covering transformations.References
- Joseph Becker, C. Ward Henson, and Lee A. Rubel, First-order conformal invariants, Ann. of Math. (2) 112 (1980), no. 1, 123–178. MR 584077, DOI 10.2307/1971323
- Paul C. Eklof and Edward R. Fischer, The elementary theory of abelian groups, Ann. Math. Logic 4 (1972), 115–171. MR 540003, DOI 10.1016/0003-4843(72)90013-7
- Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1952. MR 0045823
- Rolf Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band XLVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). 2te Aufl. MR 0057330, DOI 10.1007/978-3-662-06842-7
- O. T. O’Meara, Lectures on linear groups, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 22, American Mathematical Society, Providence, R.I., 1974. Expository Lectures from the CBMS Regional Conference held at Arizona State University, Tempe, Ariz., March 26–30, 1973. MR 0349862
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
- W. Szmielew, Elementary properties of Abelian groups, Fund. Math. 41 (1955), 203–271. MR 72131, DOI 10.4064/fm-41-2-203-271
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 88 (1983), 679-683
- MSC: Primary 30C20; Secondary 03C60, 20G20, 30C25
- DOI: https://doi.org/10.1090/S0002-9939-1983-0702298-9
- MathSciNet review: 702298