Archimedean, semiperfect and $\pi$-regular lattice-ordered algebras with polynomial constraints are $f$-algebras
HTML articles powered by AMS MathViewer
- by Stuart A. Steinberg
- Proc. Amer. Math. Soc. 89 (1983), 205-210
- DOI: https://doi.org/10.1090/S0002-9939-1983-0712623-0
- PDF | Request permission
Abstract:
It is shown that a lattice-ordered algebra is embeddable in a product of totally ordered algebras provided (i) it is archimedean, contains a left superunit which is an $f$-element, and satisfies a polynomial identity $p(x) \geqslant 0$ or $f(x,y) \geqslant 0$ (for suitable $f(x,y)$); or (ii) it is unital, and semiperfect, $\pi$-regular, or left $\pi$-regular, and some power of each element is positive.References
- Garrett Birkhoff and R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ci. 28 (1956), 41–69. MR 80099
- J. E. Diem, A radical for lattice-ordered rings, Pacific J. Math. 25 (1968), 71–82. MR 227068, DOI 10.2140/pjm.1968.25.71
- H. J. Shyr and T. M. Viswanathan, On the radicals of lattice-ordered rings, Pacific J. Math. 54 (1974), no. 1, 257–260. MR 376482, DOI 10.2140/pjm.1974.54.257
- Stuart A. Steinberg, On lattice-ordered rings in which the square of every element is positive, J. Austral. Math. Soc. Ser. A 22 (1976), no. 3, 362–370. MR 427198, DOI 10.1017/s1446788700014804
- Stuart A. Steinberg, Radical theory in lattice-ordered rings, Symposia Mathematica, Vol. XXI (Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975), Academic Press, London, 1977, pp. 379–400. MR 0472639
- Stuart A. Steinberg, Identities and nilpotent elements in lattice-ordered rings, Ring theory (Proc. Conf., Ohio Univ., Athens, Ohio, 1976) Lecture Notes in Pure and Appl. Math., Vol. 25, Dekker, New York, 1977, pp. 191–212. MR 0491403
- Stuart A. Steinberg, Unital $l$-prime lattice-ordered rings with polynomial constraints are domains, Trans. Amer. Math. Soc. 276 (1983), no. 1, 145–164. MR 684499, DOI 10.1090/S0002-9947-1983-0684499-6
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 205-210
- MSC: Primary 06F25; Secondary 16A86
- DOI: https://doi.org/10.1090/S0002-9939-1983-0712623-0
- MathSciNet review: 712623