ON SPECTRAL SYNTHESIS FOR SETS OF THE FORM \(\text{int}(E) \)

DAVID COLELLA

Abstract. The existence of a Helson set disobeying spectral synthesis is combined with the modified Herz criterion to construct a subset \(E \) of the circle such that spectral synthesis holds for \(E \) and fails for \(\partial E \).

In this note we study the spectral synthesis properties of sets \(E \) in the circle group \(T \) for which \(E = \text{int}(E) \). We use the notation of [2]. For \(E \subset T \), let \(\text{int}(E) \) denote the set of interior points of \(E \). A closed set \(E \) is a set of spectral synthesis, or an \(S \)-set, if, for any pseudomeasure \(S \) having support in \(E \), there is a net of measures \(\{\mu_\alpha\} \) supported by \(E \) so that \(\mu_\alpha \rightharpoonup S \). A set \(E \) is a Helson set if there exists a number \(B \), the Helson constant of \(E \), so that \(\|\mu\| \leq B\|\mu\|_{PM} \) for all \(\mu \in M(E) \). In the case that \(E \) is both a Helson set and an \(S \)-set, then every pseudomeasure supported by \(E \) is necessarily a measure (see [2, p. 92]). We prove the following result.

Theorem 1. There is a closed set \(E \subset T \) that satisfies spectral synthesis and yet spectral synthesis fails for the boundary set \(\partial E \).

The set \(E \) will have the form \(E = \text{int}(E) \) and will satisfy a modified Herz criterion: there exists \(0 < \varepsilon < \frac{1}{2} \) and a sequence of positive integers \(\{p_k\} \) tending to infinity so that the sets

\[
H(E, p_k, \varepsilon) = \{x = 2\pi n/p_k : n \in \mathbb{Z} \text{ and dist}(x, E) < 2\pi(1 - \varepsilon)/p_k\}
\]

are all contained in \(E \). This ensures that for every \(S \in PM(E) \) there is a sequence \(\{\mu_k\} \) of measures supported by \(E \) satisfying \(\mu_k \rightharpoonup S \) and \(\|\mu_k\|_{PM} \leq B\|S\|_{PM} \), where the constant \(B \) depends only on the set \(E \) and not the particular pseudomeasure [2, p. 77]. This result is not new in that the unit ball \(E^n = \{x \in \mathbb{R}^n : |x| \leq 1\} \) satisfies a strong form of spectral synthesis, and it is well known that the boundary set, the unit sphere \(S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\} \), is a non-\(S \)-set for \(n > 2 \). Our result is new for the group \(T \).

We first give a lemma. We say that a set \(F \subset T \) is independent if it is independent in \(\mathbb{R} \) over the rationals, that is, given integers \(n_1, n_2, \ldots, n_m \) and distinct points \(x_1, x_2, \ldots, x_m \) in \(F \), then \(n_1x_1 + \cdots + n_mx_m = 0 \) implies \(n_1 = n_2 = \cdots = n_m = 0 \). Let \(F \subset T \) be an independent set that contains no rational multiples of \(\pi \), and let \(\{q_k\} \) be an increasing sequence of positive integers tending to infinity. Given an
element \(y \in T \), it is easy to find \(x_1 \) and \(x_2 \) disjoint from \(F \cup \{ r\pi: r \text{ rational} \} \) so that \(F \cup \{ x_1, x_2 \} \) is independent, \(y \) lies in the interval \(I = [x_1, x_2] \), and \(I \cap F = \emptyset \). Using a well-known method of constructing perfect, independent sets (see [3, pp. 101–102]), we can find \(x_1 \) and \(x_2 \) that satisfy the above conditions and the further condition that some subsequence \(\{ q_k^1 \}_{k=0}^{\infty} \) of \(\{ q_k \}_{k=1}^{\infty} \) exists for which the sets \(H(I, q_k^1, \frac{1}{4}), k \geq 0 \), are contained in \(I \). The same argument allows us to prove

Lemma 2. Let \(F_0 \) be an independent set in \(T \) that contains no rational multiples of \(\pi \), let \(\{ q_k \}_{k=0}^{\infty} \) be an increasing sequence of positive integers tending to infinity, and let \(H \) be a finite set with \(F_0 \cap H = \emptyset \). Then there exist disjoint intervals \(I_1, I_2, \ldots, I_m \) with \(I = \bigcup_{j=1}^{m} I_j \) and \(\partial I \cap \{ r\pi: r \text{ rational} \} = \emptyset \) satisfying

(i) \(I \cap F_0 = \emptyset \),
(ii) \(F_0 \cup \partial I \) is independent,
(iii) \(H \subseteq I \subseteq H + (-2\pi/4q_0, 2\pi/4q_0) \),
(iv) there exists a subsequence \(\{ q_k^1 \}_{k=0}^{\infty} \) of \(\{ q_k \}_{k=1}^{\infty} \) so that the sets \(H(I, q_k^1, \frac{1}{4}), k \geq 0 \), are contained in \(I \).

Proof of the Theorem. Let \(F \) be an independent Helson set in \(T \) for which spectral synthesis fails [2, p. 118]. Since \(F \) is independent, we can assume that \(F \) contains no rational multiples of \(\pi \). We use the well-known fact that if \(F \) is a given Helson set, then for any finite independent set \(H \), \(F \cup H \) is a Helson set whose Helson-set constant is bounded by a fixed constant \(B \) depending only on the Helson-set constant of the set \(F \) (see [2, p. 51]). We define inductively sets \(I_n, n \geq 1 \), each of which is a finite union of closed intervals, and a sequence \(\{ p_k \}_{k=1}^{\infty} \) of positive integers. Let \(p_1 = q_0 = 2 \), and use Lemma 2 to obtain \(I_1 \) and a subsequence \(\{ q_k^1 \}_{k=0}^{\infty} \) of positive integers. After having chosen sets \(I_1, \ldots, I_{n-1} \) and integers \(p_1, \ldots, p_{n-1} \) and obtaining a subsequence \(\{ q_k^{n-1} \}_{k=0}^{\infty} \), choose \(p_n \in \{ q_k^{n-1} \} \) large enough so that

\[
2\pi/p_n < 10 \min \left\{ \text{dist}(x, F): x \in \bigcup_{j=1}^{n-1} I_j \right\}.
\]

Let \(H_n \) denote the set \(H(F, p_n, 0) \) and apply the lemma with \(q_0 = p_n \) to obtain a finite collection of intervals whose union \(I_n \) satisfies the conclusions of Lemma 2 with \(F_0 = F \cup \bigcup_{k=1}^{n-1} \partial I_k \), \(H = H_n \), and some subsequence \(\{ q_k^n \}_{k=0}^{\infty} \) of \(\{ q_k^{n-1} \}_{k=0}^{\infty} \).

Now define \(E = F \cup \bigcup_{n=1}^{\infty} I_n \). It is clear that \(E = \bigcup I_n = \text{int}(E) \). We claim that \(E \) satisfies a modified Herz criterion for the sets (1) for the sequence \(\{ p_n \} \) and for \(\varepsilon = \frac{1}{4} \). Let \(\varepsilon = \frac{1}{4}, k \in \mathbb{Z} \) and \(x = 2\pi k/p_n \) satisfy \(\text{dist}(x, E) < 2\pi(1-\varepsilon)/p_n \). If \(x \in H_n \subseteq I_n \subseteq E \), there is nothing to prove, so assume \(x \notin H_n \). Then \(\text{dist}(x, F) > 2\pi/p_n \), and \(\text{dist}(x, I_m) < 2\pi(1-\varepsilon)/p_n \) for some \(m \). Since (2) implies that \(I_m \subseteq F + (-2\pi/p_n, 2\pi/p_n) \) for \(m > n \), and since \(m = n \) implies \(x \in H_n \), we in fact have \(m < n \). Property (iv) and the fact that \(p_n \in \{ q_k^{m-1} \} \) for \(m < n \) now forces \(x \in I_m \subseteq E \). Thus, \(E \) is a set of synthesis.

To finish the proof we show that \(\partial E = F \cup \bigcup_{n=1}^{\infty} \partial I_n \) is a Helson non-\(S \)-set. Let \(\mu \in M(\partial E) \) and \(\varepsilon > 0 \) be given. Since \(\bigcup_{n=1}^{\infty} \partial I_n \) is a countable set, we can find an integer \(N \) so that the measure \(\mu_N \), the restriction of \(\mu \) to the set \(F \cup \bigcup_{n=1}^{N} \partial I_n \), has
By construction, \(\bigcup_{n=1}^{N} \partial I_n \) is a finite independent set, and so we obtain
\[
\|\mu\| < \|\mu_N\| + \varepsilon < B\|\mu_N\|_{PM} + B\varepsilon + \varepsilon.
\]
Since \(\varepsilon \) and \(\mu \) are arbitrary, \(\|\mu\| < B\|\mu\|_{PM} \) for all measures \(\mu \) supported by \(\partial E \), i.e., \(\partial E \) is a Helson set. Since there exists an \(S \in PM(F) \subseteq PM(\partial E) \) that is not a measure, this proves that \(\partial E \) is a non-\(S' \)-set.

Remarks. 1. The proof of the theorem is easily adapted so the set \(E \) satisfies a modified Herz criterion with sets \(H(E, p_k, \varepsilon) \) in (1) for any \(\varepsilon \) with \(0 < \varepsilon < \frac{1}{2} \).

2. A similar proof yields the existence of sets \(E \) which are the closures of their interiors and for which spectral synthesis fails. For let \(F \) be a non-\(S \)-set in \(T \). Then there exists a \(\phi \in A(T) \) and an \(S \in PM(F) \) satisfying \(\phi = 0 \) on \(F \) and \(\langle S, \phi \rangle \neq 0 \) \([2, \text{p. 69}] \). If \(\{x_n\}_{n=1}^{\infty} \subseteq F \) is dense in \(F \), choose \(y_n \notin F, n \geq 1 \), with \(\text{dist}(x_n, y_n) \to 0 \) and \(|\phi(y_n)| < 2^{-2n} \). We can now find functions \(\phi_n \in A(T) \) with mutually disjoint supports and supports disjoint from \(F \) so that \(\|\phi_n\| < 2^{-n} \) and \(\phi_n = \phi \) on some interval \(I_n \) containing \(y_n \). Since the function \(\phi - \Sigma \phi_n \) belongs to \(A(T) \), vanishes on \(E = F \cup \bigcup_{n=1}^{\infty} I_n \), and has \(\langle S, \phi - \Sigma \phi_n \rangle = \langle S, \phi \rangle \neq 0 \), the set \(E = \text{int}(E) \) disobeys synthesis. The existence of non-\(S \)-sets which are closures of their interiors was originally suggested by Beurling \([1]\).