THE UNIQUENESS OF MULTIPLICATION
IN FUNCTION ALGEBRAS

KRZYSZTOF JAROSZ

Abstract. Let A be a function algebra. We prove that the original multiplication of A is a unique multiplication on the underlying Banach space of A which produces a Banach algebra with the same unit as the original one.

Let A be a complex Banach algebra with unit. We denote by 1 the unit of A, the norm by $\| \cdot \|$ and the product of f and g by fg or $f \cdot g$. By the definition of a Banach algebra, for any elements f, g in A we have

\[(1)\quad \| f \cdot g \| \leq \| f \| \| g \| \]
and

\[(2)\quad 1 \cdot f = f.\]

Suppose now that A is uniform algebra, that is, A is a commutative Banach algebra with unit and $\| f^2 \| = \| f \|^2$ for all f in A. Our goal is to prove that there exists exactly one (associative) multiplication on the Banach space A which satisfies (1) and (2). This result follows upon considering a more general situation.

By an ε-deformation of A we mean an associative multiplication \times on the Banach space A such that

\[(3)\quad \| f \times g - f \cdot g \| \leq \varepsilon \| f \| \| g \| \quad \text{for all } f, g \in A.\]

This definition was formulated by Johnson [2] (see also [3,4]). He investigates whether all multiplications on a Banach algebra A near the given multiplication share some of the properties of the original one. Small deformations of function algebras were studied deeply by R. Rochberg [5].

If \times is an ε-deformation of the multiplication of a Banach algebra A then for all f, g in A

\[(4)\quad \| f \times g \| \leq (1 + \varepsilon) \| f \| \| g \| \]
and

\[(5)\quad \| 1 \times f - f \| \leq \varepsilon \| f \|.\]

Our main theorem shows that for uniform algebras the converse implication also holds.

Received by the editors October 5, 1982.

1980 Mathematics Subject Classification. Primary 46J10; Secondary 46J35.

Key words and phrases. Function algebras, perturbations of multiplication, Nagasawa's Theorem, uniqueness of multiplication.
Theorem 1. Suppose \((A, \cdot)\) is a complex uniform algebra. There are positive constants \(\varepsilon_0, c\) which do not depend on \(A\) such that for any \(0 < \varepsilon \leq \varepsilon_0\) and any multiplication with unit on \(A\) satisfying the conditions

(i) \[\|f \times g\| \leq (1 + \varepsilon)\|f\|\|g\|\]

(ii) \[\|1 \times f - f\| \leq \varepsilon\|f\|\text{ for all } f, g \in A,\]

(iii) \[\|f \times g - f \cdot g\| \leq c\varepsilon\|f\|\|g\|\text{ for all } f, g \in A.\]

Moreover the new multiplication \(\times\) is commutative.

Proof. If \(\varepsilon_0 < 1\) then the condition (ii) implies that the operator \(T: A \to A: f \mapsto 1 \times f\) is an isomorphism so there exists an element \(e\) of \(A\) such that \(1 \times e = 1\). It is easy to check that \(e\) is the unit of the algebra \((A, \times)\) and that the element \(1\) is invertible in this algebra. A simple computation using (i) and (ii) proves that

\[\|f \times g - 1^{-1} \times f \times g\| \leq \frac{2(1 + \varepsilon)^2\varepsilon}{1 - \varepsilon}\|f\|\|g\|\]

for all \(f, g\) in \(A\). Hence the multiplication \(\hat{\times}\) defined by \(\hat{f} \hat{\times} g = 1^{-1} \times f \times g\) has the same unit as the original multiplication of the function algebra \(A\) and the multiplication denoted by \(\hat{\times}\) is a \(ke\)-deformation of the multiplication \(\times\). This proves that without loss of generality we may assume that the element \(1\) is a common unit of both multiplications \(\times\) and \(\hat{\times}\).

Let us now introduce some notation.

By \(\partial A\) and \(Ch A\) we denote the Shilov and the Choquet boundaries of \(A\), respectively. Let

\[\Omega = \left\{ x + iy \in \mathbb{C}: (x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 < \frac{1}{2} \right\} \cap \left\{ x + iy \in \mathbb{C}: (x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 < \frac{1}{2} \right\}\]

and for \(r > 0\)

\[D(r) = \{ x + iy \in \mathbb{C}: x^2 + y^2 < r^2 \} \]

Notice that without loss of generality we may assume that \(A\) is an algebra of continuous functions on \(\partial A\).

Fix \(\delta > 0\), and let \(\kappa: \overline{D(1)} \to \overline{\Omega}\) be a continuous map of \(\overline{D(1)}\) onto \(\overline{\Omega}\) such that \(\kappa\) is analytic on \(\overline{D(1)}\) and

\[\kappa(1) = 1 \quad \text{and} \quad \kappa(0) = \delta/2\]

Let \(V \subset \mathbb{C}\) be a neighborhood of \(0\) such that

\[\kappa(V) \subset \overline{\Omega} \cap D(\delta)\]

Now fix any point \(s_0 \in Ch A\) and any of its neighborhoods \(U \subset \partial A\), and let \(f \in A\) be such that

\[\|f\| = f(s_0) = 1 \quad \text{and} \quad f(\partial A - U) \subset V\]

The function \(\kappa \circ f \in A\) has the following properties:

(a) \(\kappa \circ f(\partial A) \subset \overline{\Omega}\);
(b) \(\|\kappa \circ f\| = \kappa \circ f(s_0) = 1\);
(c) \(\kappa \circ f(\partial A - U) \subset \overline{\Omega} \cap D(\delta)\).
Hence for any \(s_0 \in \text{Ch} \ A \) there exists a net \((f_\alpha) \subset A\) such that
(A) \(f_\alpha(\partial A) \subset \bar{\Omega} \),
(B) \(\|f_\alpha\| = f_\alpha(s_0) = 1 \),
(C) \((f_\alpha)\) tends uniformly to zero on the compact subsets of the set \(\partial A - \{s_0\} \).

Using the net \((f_\alpha)\) we define
\[
g'_\alpha = f_\alpha + i(1 - f_\alpha), \quad g''_\alpha = f_\alpha - i(1 - f_\alpha).
\]
By direct computation
\[
g'_\alpha \times g'_\beta = f_\alpha + f_\beta - 1 + i(f_\alpha + f_\beta - 2f_\alpha \times f_\beta).
\]
Further observe that, by the definition of \(\Omega \), we have
\[
\|g'_\alpha\| = \sup_{s \in \partial A} |f_\alpha(s) + i(1 - f_\alpha(s))| \leq \sup_{z \in \Omega} |z + i(1 - z)| = 1.
\]

Hence from (i) we get
\[
1 + \epsilon \geq \|g'_\alpha \times g'_\beta\| \geq |g'_\alpha \times g'_\beta(s_0)| = |1 + 2i(1 - f_\alpha \times f_\beta(s_0))|.
\]

The same computations for the functions \(g''_\alpha \) and \(g''_\beta \) show that
\[
1 + \epsilon \geq \|g''_\alpha \times g''_\beta\| \geq |g''_\alpha \times g''_\beta(s_0)| = |1 - 2i(1 - f_\alpha \times f_\beta(s_0))|.
\]

Inequalities (6) and (7) can be satisfied simultaneously only if
\[
|1 - f_\alpha \times f_\beta(s_0)| \leq \sqrt{\epsilon/2 + \epsilon^2/4} \leq \sqrt{\epsilon}.
\]

Now for any \(g \in A \) define two functionals \(T'_g: A \rightarrow \mathbb{C} \) and \(T'_g: A \rightarrow \mathbb{C} \) by
\[
T'_g(f) = g \times f(s_0), \quad T'_g(f) = f \times g(s_0).
\]
For each \(g \in A \) fix two regular measures \(\mu'_g \) and \(\mu'_g \) on \(\partial A \) such that
\[
\mu'_g(f) = T'_g(f), \quad \var(\mu'_g) = \|T'_g\|,
\]
\[
\mu'_g(f) = T'_g(f), \quad \var(\mu'_g) = \|T'_g\| \quad \text{for all } f \in A.
\]
Inequality (8) shows that
\[
|\mu'_\alpha(f_\beta) - 1| \leq \sqrt{\epsilon} \quad \text{for any } \alpha \text{ and all } \beta.
\]
By the definition of \((f_\alpha)\) we get
\[
|\mu'_\alpha(\{s_0\}) - 1| \leq \sqrt{\epsilon}.
\]
Hence, because \(\var(\mu'_\alpha) = \|T'_\alpha\| = 1 + \epsilon \), the measure \(\mu'_\alpha \) is of the form
\[
\mu'_\alpha = \delta_{s_0} + \Delta \mu'_\alpha,
\]
where \(\delta_{s_0} \) is a Dirac measure concentrated at the point \(s_0 \) and \(\var(\Delta \mu'_\alpha) \leq 3\sqrt{\epsilon} \).

Now let \(g_0 \) be any element of \(A \) such that \(\|g_0\| = 1 = g_0(s_0) \). By (10) we get
\[
\mu'_{g_0}(f_\alpha) = f_\alpha \times g_0(s_0) = \mu'_\alpha(g_0)
\]
\[
= g_0(s_0) + \Delta \mu'_\alpha(g_0) = 1 + \Delta \mu'_\alpha(g_0).
\]
Hence
\[
|\mu'_{g_0}(f_\alpha) - 1| \leq 3\sqrt{\epsilon}.
\]
In the same way as previously, we get
\[(11) \quad \mu'_{g_0} = \delta_{s_0} + \Delta \mu'_{g_0}, \quad \text{where} \quad \text{var}(\Delta \mu'_{g_0}) \leq \frac{7}{\sqrt[4]{\epsilon}}.\]

Using this we can estimate the norm of $g_0 \times g_0$ from below.
\[
\|g_0 \times g_0\| \geq |g_0 \times g_0(s_0)| = |\mu'_{g_0}(g_0)| = |1 + \Delta \mu'_{g_0}(g_0)| \\
\geq 1 - \frac{7}{\sqrt[4]{\epsilon}}.
\]

Because s_0 is an arbitrary point of $\text{Ch} \ A$ this proves that
\[(12) \quad \|g \times g\| \geq \left(1 - \frac{7}{\sqrt[4]{\epsilon}}\right)\|g\|^2 \quad \text{for any} \quad g \in A.
\]

As an immediate consequence of (12) we conclude that the spectral radius of any element g of the algebra (A, \times) is not less than $(1 - \frac{7}{\sqrt[4]{\epsilon}})\|g\|$. Hence by a theorem of Hirschfeld and Żelazko [1] one obtains the commutativity of the multiplication \times if $1 - \frac{7}{\sqrt[4]{\epsilon}} > 0$.

Applying (12) for $g = f_\alpha$ and using the commutativity of \times we get that there exists a linear and \times-multiplicative functional F_α such that $|F_\alpha(f_\alpha)| \geq 1 - \frac{7}{\sqrt[4]{\epsilon}}$. For any f in A of norm equal one we have
\[
(1 + \epsilon)\|F_\alpha\| \geq \|F_\alpha\|\|f \times f\| \geq |F_\alpha(f \times f)| = |F_\alpha(f)|^2,
\]

hence
\[
(1 + \epsilon)\|F_\alpha\| \geq \|F_\alpha\|^2, \quad \text{so} \quad \|F_\alpha\| \leq 1 + \epsilon.
\]

Let ν_α be a regular measure on ∂A which represents the functional F_α and such that $\text{var}(\nu_\alpha) = \|F_\alpha\|$. We have
\[
\begin{aligned}
|\nu_\alpha(f_\alpha)| &\geq 1 - \frac{7}{\sqrt[4]{\epsilon}}, \\
\text{var}(\nu_\alpha) &\leq 1 + \epsilon, \\
\nu_\alpha(1) &\leq 1 \quad \text{for all indices} \quad \alpha.
\end{aligned}
\]

Taking a net finer than (f_α) and using the weak \ast compactness of ∂A we can assume, without loss of generality, that the net (ν_α) is weak \ast convergent to the measure ν_0. The measure ν_0 also represents a linear and \times-multiplicative functional F_0 on A.

From (13) we derive that the measure ν_0 is of the form
\[(14) \quad \nu_0 = \delta_{s_0} + \Delta \nu_{s_0} \quad \text{where} \quad \text{var}(\Delta \nu_{s_0}) \leq c_1\sqrt[4]{\epsilon}.
\]

From (14) for any f, g in A we find
\[
f \times g(s_0) + \Delta \nu_{s_0}(f \times g) = \nu_0(f \times g) = \nu_0(f) \cdot \nu_0(g) \\
= (f(s_0) + \Delta \nu_{s_0}(f)) \cdot (g(s_0) + \Delta \nu_{s_0}(g)) \\
= f(s_0) \cdot g(s_0) + \Delta \nu_{s_0}(f) \cdot g(s_0) + f(s_0) \cdot \Delta \nu_{s_0}(g) + \Delta \nu_{s_0}(f) \cdot \Delta \nu_{s_0}(g).
\]

Hence
\[
|f \times g(s_0) - f \cdot g(s_0)| \leq \text{var}(\Delta \nu_{s_0})(2\|f\|\|g\| + \text{var}(\Delta \nu_{s_0}) \cdot \|f\|\|g\|) \\
\leq c_1\sqrt[4]{\epsilon} \left(2 + c_1\sqrt[4]{\epsilon}\right) \cdot \|f\|\|g\| = c_1\sqrt[4]{\epsilon} \|f\|\|g\|.
\]
Because s_0 is an arbitrary point in $\text{Ch} A$, which is a dense subset of ∂A, the above statement proves (iii) and ends the proof of the theorem.

Corollary 1. Suppose (A, \cdot) is a complex function algebra. Let \times be any associative multiplication on the Banach space A with the same unit and such that (A, \times) is a Banach algebra (this means such that $\|f \times g\| \leq \|f\|\|g\|$ for all f, g in A). Then the new multiplication \times and the original one coincide.

The above corollary can be also formulated in the following way, giving a generalization of Nagasawa's Theorem.

Corollary 2. Let (A, \cdot) be a complex function algebra with unit 1_A and let B be any Banach algebra with unit 1_B. Suppose T is a linear isometry from A onto B such that $T1_A = 1_B$. Then T is an algebra isomorphism of A and B.

Notice that we have only considered complex Banach algebras. The theorem and the corollaries are not valid for real function algebras, even in two dimensions. To prove this let $A = (\mathbb{R}^2, \cdot, \|\cdot\|_{\infty})$ be the two dimensional real function algebra and let $\rho_t: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$.

$$\rho_t((x, y), (x', y')) = (xx' - t(x - y)(x' - y'), yy' - t(x - y)(x' - y')).$$

A direct computation shows that for any $0 \leq t \leq 1/2$ the bilinear map ρ_t is a commutative, associative multiplication on \mathbb{R}^2 such that $\|\rho_t\| = 1$ and

$$\rho_t((1, 1), (x, y)) = (x, y) \quad \text{for any} \quad (x, y) \in \mathbb{R}^2.$$

Let us end the paper with a natural problem arising from Corollary 1.

Problem. Characterize those Banach spaces A and elements e which admit a unique multiplication \times on A so that (A, \times) is a Banach algebra with unit e.

References

Institute of Mathematics, Warsaw University, Warsaw, Poland