On the existence and boundary behavior of solutions to a class of nonlinear Dirichlet problems
HTML articles powered by AMS MathViewer
- by Carlos E. Kenig and Wei-Ming Ni
- Proc. Amer. Math. Soc. 89 (1983), 254-258
- DOI: https://doi.org/10.1090/S0002-9939-1983-0712633-3
- PDF | Request permission
Abstract:
In this paper, we first extend the well-known method of super- and sub-solutions for elliptic boundary value problems to ${L^\infty }$-boundary functions. Then we apply this method to investigate the solvability and the boundary behavior of solutions to some nonlinear elliptic equations, some Fatou-type results are obtained.References
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no.ย 3, 209โ243. MR 544879
- David S. Jerison and Carlos E. Kenig, The Dirichlet problem in nonsmooth domains, Ann. of Math. (2) 113 (1981), no.ย 2, 367โ382. MR 607897, DOI 10.2307/2006988
- D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972/73), 241โ269. MR 340701, DOI 10.1007/BF00250508
- Jerry L. Kazdan and F. W. Warner, Curvature functions for open $2$-manifolds, Ann. of Math. (2) 99 (1974), 203โ219. MR 343206, DOI 10.2307/1970898
- Charles B. Morrey Jr., Second order elliptic equations in several variables and Hรถlder continuity, Math. Z. 72 (1959/1960), 146โ164. MR 0120446, DOI 10.1007/BF01162944
- Wei Ming Ni, On the elliptic equation $\Delta u+K(x)u^{(n+2)/(n-2)}=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), no.ย 4, 493โ529. MR 662915, DOI 10.1512/iumj.1982.31.31040
- David H. Sattinger, Topics in stability and bifurcation theory, Lecture Notes in Mathematics, Vol. 309, Springer-Verlag, Berlin-New York, 1973. MR 0463624
- Kjell-Ove Widman, On the boundary behavior of solutions to a class of elliptic partial differential equations, Ark. Mat. 6 (1967), 485โ533 (1967). MR 219875, DOI 10.1007/BF02591926
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 254-258
- MSC: Primary 35J65; Secondary 35J67
- DOI: https://doi.org/10.1090/S0002-9939-1983-0712633-3
- MathSciNet review: 712633