A note on $\alpha$-compact spaces
HTML articles powered by AMS MathViewer
- by Teklehaimanot Retta
- Proc. Amer. Math. Soc. 89 (1983), 314-316
- DOI: https://doi.org/10.1090/S0002-9939-1983-0712643-6
- PDF | Request permission
Abstract:
For an infinite cardinal $\alpha$, $m(\alpha )$ denotes the least measurable cardinal, if one exists, not less than $\alpha$. We give easy proofs of generalizations of some results on realcompact spaces. Among these we prove the following generalization of a theorem of A. Kato. Let $\{ {X_i}:i \in I\}$ be a collection of spaces each having at least two elements. Then the $k$-box product ${(\prod {X_i})_k}$ is $\alpha$-compact if and only if either ${X_i}$ is $\alpha$-compact for each $i \in I$ and $k \leqslant m(\alpha )$ or $\left | I \right | < m(\alpha )$.References
- W. Wistar Comfort and Teklehaimanot Retta, Generalized perfect maps and a theorem of I. Juhász, Rings of continuous functions (Cincinnati, Ohio, 1982) Lecture Notes in Pure and Appl. Math., vol. 95, Dekker, New York, 1985, pp. 79–102. MR 789263
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- Akio Kato, Realcompactness of box products, Mem. Defense Acad. 19 (1979), no. 1, 1–4. MR 532792 T. Retta, Doctoral Dissertation, Wesleyan University, 1977.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 314-316
- MSC: Primary 54B10; Secondary 03E55, 54D60
- DOI: https://doi.org/10.1090/S0002-9939-1983-0712643-6
- MathSciNet review: 712643