A conjecture on compact Fréchet spaces
HTML articles powered by AMS MathViewer
- by Hao Xuan Zhou
- Proc. Amer. Math. Soc. 89 (1983), 326-328
- DOI: https://doi.org/10.1090/S0002-9939-1983-0712645-X
- PDF | Request permission
Abstract:
Let $X$ be a compact Hausdorff space. $X$ is Fréchet if every feebly compact subset is closed in $X$. Under MA, the converse is false.References
- Andrew J. Berner, $\beta (X)$ can be Fréchet, Proc. Amer. Math. Soc. 80 (1980), no. 2, 367–373. MR 577776, DOI 10.1090/S0002-9939-1980-0577776-3
- R. W. Bagley, E. H. Connell, and J. D. McKnight Jr., On properties characterizing pseudo-compact spaces, Proc. Amer. Math. Soc. 9 (1958), 500–506. MR 97043, DOI 10.1090/S0002-9939-1958-0097043-2
- Mohammad Ismail and Peter Nyikos, On spaces in which countably compact sets are closed, and hereditary properties, Topology Appl. 11 (1980), no. 3, 281–292. MR 585273, DOI 10.1016/0166-8641(80)90027-9
- Handbook of mathematical logic, Studies in Logic and the Foundations of Mathematics, vol. 90, North-Holland Publishing Co., Amsterdam, 1977. Edited by Jon Barwise; With the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra. MR 457132
- Handbook of mathematical logic, Studies in Logic and the Foundations of Mathematics, vol. 90, North-Holland Publishing Co., Amsterdam, 1977. Edited by Jon Barwise; With the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra. MR 457132
- Yoshio Tanaka, Some results on sequential spaces, Bull. Tokyo Gakugei Univ. (4) 33 (1981), 1–10. MR 635491 —, private communication.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 326-328
- MSC: Primary 54D30; Secondary 03E50, 54D55
- DOI: https://doi.org/10.1090/S0002-9939-1983-0712645-X
- MathSciNet review: 712645