CARDINAL FUNCTIONS
ON PIXLEY-ROY HYPERSPACES

SHOZO SAKAI

Abstract. Some cardinal functions on the Pixley-Roy hyperspace \(\mathcal{F}[X] \) of a space \(X \) are determined by those on \(X \), and conditions of \(X \) by cardinal functions from which \(\mathcal{F}[X] \) has or has not some properties, e.g. cosmic, paracompact, ccc, etc. are given.

All spaces considered in this paper will be assumed to be infinite \(T_1 \)-spaces. Cardinals are the initial ordinals, \(\tau \) will always denote an infinite cardinal and \(\omega \) is the smallest infinite cardinal. The cardinality of a set \(X \) is denoted by \(|X| \) and \(c \) is the cardinality of the continuum. The successor cardinal of \(\tau \) is denoted by \(\tau^+ \).

The Pixley-Roy hyperspace \(\mathcal{F}[X] \) of a space \(X \) has as its underlying set the collection of all finite nonempty subsets of \(X \). If \(A \in \mathcal{F}[X] \), then the basic nbds (= neighbourhoods) of \(A \) are \([A, U] = \{ S \in \mathcal{F}[X] : A \in S \subseteq U \} \), where \(U \) is an open set of \(X \) containing \(A \).

We refer to [J] for the following cardinal functions—\(w \) (weight), \(\pi \) (\(\pi \)-weight), \(nw \) (net weight), \(d \) (density), \(c \) (cellularity), \(L \) (Lindelöf-degree), \(p \) (= e (extent) in [E]), \(\chi \) (character), \(\psi \) (pseudo character), \(\Psi \) (\(\Psi(X) = \omega \) iff \(X \) is perfect), \(\psi_\Delta \) (diagonal degree), \(\pi\chi \) (\(\pi \)-character), \(t \) (tightness) and \(psw \) (point separating weight). However, following Engelking [E], the hereditary density and the hereditary Lindelöf-degree are denoted by \(hd \) and \(hL \), respectively.

In the following, Theorem 2 is the main result of this paper. Some results in it were given by van Douwen [vD], Lutzer [L] and Przymusiñski [P]. Though Proposition 1 is an auxiliary one for Theorem 2, it is interesting in itself.

Proposition 1. If \(A \in \mathcal{F}[X] \), then the following hold:

1. \(\psi(A, \mathcal{F}[X]) = \max\{\psi(x, X) : x \in A\} \).
2. \(\pi\chi(A, \mathcal{F}[X]) = \chi(A, \mathcal{F}[X]) \leq \max\{\chi(x, X) : x \in A\} \).

If \(x \in X \), then the following hold:

3. \(\chi(\{x\}, \mathcal{F}[X]) = \chi(x, X) \).
4. \(t(x, X) \leq t(\{x\}, \mathcal{F}[X]) \).

If \(X \) is Hausdorff and \(A \in \mathcal{F}[X] \), then the following holds:

5. \(\chi(A, \mathcal{F}[X]) = \max\{\chi(x, X) : x \in A\} \).

Received by the editors November 5, 1982 and, in revised form, February 16, 1983.
1980 Mathematics Subject Classification. Primary 54A25, 54B20; Secondary 54D18, 54D20.

©1983 American Mathematical Society
0002-9939/83 $1.00 + .25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

336
CARDINAL FUNCTIONS ON PIXLEY-ROY HYPERSPACES

337

Proof. (1) Let \(A = \{x_1, \ldots, x_n\} \subseteq \mathbb{T}[X] \). For each \(i \in \{1, \ldots, n\} \), there is a local \(\psi \)-base \(\mathcal{U}_i \) of \(x_i \) in \(X \) such that \(|\mathcal{U}_i| \leq \psi(x_i, X) \). Let

\[\mathcal{U} = \{ \bigcup \{ U_i : i = 1, \ldots, n \} : U_i \in \mathcal{U}_i \} \quad \text{and} \quad \mathcal{B} = \{ [A, U] : U \in \mathcal{U} \}. \]

Then \(\mathcal{B} \) is a local \(\psi \)-base of \(A \) in \(\mathbb{T}[X] \) and \(|\mathcal{B}| \leq \max\{\psi(x_i, X) : i = 1, \ldots, n\} \). Thus, we have \(\psi(A, \mathbb{T}[X]) \leq \max\{\psi(x, X) : x \in A\} \). Conversely, let \(\mathcal{B} \) be a local \(\psi \)-base of \(A \) in \(\mathbb{T}[X] \) and \(x \in A \). Then \(\mathcal{U} = \{ B \setminus (A \setminus \{x\}) : [A, B] \in \mathcal{B} \} \) is a local \(\psi \)-base of \(x \) in \(X \). Therefore, we have \(\psi(x, X) \leq \psi(A, \mathbb{T}[X]) \) and \(\max\{\psi(x, X) : x \in A\} \leq \psi(A, \mathbb{T}[X]) \).

(2) Let \(\mathcal{B} \) be a local \(\pi \)-base of \(A \) in \(\mathbb{T}[X] \). For each \(B \in \mathcal{B} \), we can take an element \(A_B \subseteq B \) and an open nbhd \(U_B \) of \(A_B \) in \(X \) such that \([A_B, U_B] \subseteq B \). Then, \(\mathcal{U} = \{ [A, U_B] : B \in \mathcal{B}, A \subseteq A_B \} \) is a nbhd base of \(A \) in \(\mathbb{T}[X] \). For, let \(V \) be an open nbhd of \(A \) in \(X \).

Then, there is \(B \in \mathcal{B} \) such that \(B \subseteq [A, V] \). Therefore, \([A_B, U_B] \subseteq B \subseteq [A, V] \), i.e. \(A \subseteq A_B \subseteq U_B \subseteq V \). Thus, \([A_B, U_B] \subseteq [A, V] \) and \(\mathfrak{B} \) is a nbhd base of \(A \) in \(\mathbb{T}[X] \). Since \(|\mathcal{U}| \leq |\mathcal{B}| \), we have \(\chi(A, \mathbb{T}[X]) \leq \pi\chi(A, \mathbb{T}[X]). \)

(3) The proof is clear.

(4) Let \(H \subseteq X \) and \(x \in X \setminus H \). Let us put \(\mathcal{K} = \mathbb{T}[H \cup \{x\}] \\setminus \{\{x\}\} \).

Then \(\{x\} \subseteq \mathcal{K} \subseteq X \). Therefore, there is a subset \(\mathcal{M} \subseteq \mathcal{K} \) such that \(|\mathcal{M}| \leq t(x, \mathbb{T}[X]) \) and \(\{x\} \subseteq \mathcal{M} \subseteq X \). Let \(\mathcal{M} = \{ \{x\} \} \cup \mathcal{K} \subseteq X \). Then \(x \in cl_X \mathcal{M} \). For, let \(V \) be a nbhd of \(x \) in \(X \).

Then, there is \(\mathcal{V} \subseteq \mathcal{M} \) such that \(\mathcal{V} \subseteq \{x\} \). Since \(x \notin \mathcal{V} \), there is an element \(x \in \mathcal{V} \cap \mathcal{M} \). Then, \(x \in cl_X \mathcal{M} \).

Since \(\mathcal{M} \subseteq H \) and \(|\mathcal{M}| \leq |\mathcal{K}| \leq t(x, \mathbb{T}[X]) \), we have \(t(x, X) \leq t(x, \mathbb{T}[X]) \).

(5) Let us assume that there is \(x \in A \) with \(\chi(A, \mathbb{T}[X]) < \chi(x, X) \). Let \(\tau = \mathfrak{U}(A, \mathbb{T}[X]) \) and \(\mathfrak{U} \) a nbhd base of \(A \) in \(\mathbb{T}[X] \) with \(|\mathfrak{U}| \leq \tau \). We can assume \(\mathfrak{U} = \{ [A, U] : \alpha < \tau \} \), where \(U \) is an open set of \(X \) containing \(A \). Since \(X \) is Hausdorff, there is an open nbhd \(U \) of \(x \) with \((A \setminus \{x\}) \cap (\bigcup \{U \cap \alpha \} = \varnothing \). Since \(\chi(x, X) \tau \), there is an open nbhd \(V \) of \(x \) with \(U \cap U \subset V \) for each \(\alpha < \tau \). Let \(W = V \cup (X \setminus cl_X U) \).

Then \(A \subseteq W \) is an open nbhd of \(A \) in \(\mathbb{T}[X] \). Since \(U \subseteq W \), \([A, U] \subseteq [A, W] \) for each \(\alpha < \tau \). Therefore, \(\mathfrak{U} \) is not a nbhd base of \(A \), a contradiction. Thus, we have \(\chi(x, X) \leq \chi(A, \mathbb{T}[X]) \) for each \(x \in A \). This completes the proof of Proposition 1.

Theorem 2. For each space \(X \), the following hold:

(1) \(|\mathbb{T}[X]| = \text{nw}(\mathbb{T}[X]) = \text{d}(\mathbb{T}[X]) = L(\mathbb{T}[X]) = p(\mathbb{T}[X]) = |X| \).

(2) \(\chi(\mathbb{T}[X]) = \pi\chi(\mathbb{T}[X]) = \chi(X) \).

(3) \(w(\mathbb{T}[X]) = \pi(\mathbb{T}[X]) = \chi(X) |X| \).

(4) \(\text{psw}(\mathbb{T}[X]) = \psi(\mathbb{T}[X]) = \psi(X) \).

(5) \(\psi(X) = \omega \) iff \(\Psi(\mathbb{T}[X]) = \omega \) iff \(\psi(\mathbb{T}[X]) = \omega \).

(6) \(\text{hd}(X)h L(X) \leq c(\mathbb{T}[X]) \leq \text{nw}(X) \).

Proof. (1) Since \(\{\{x\} : x \in X\} \) is a closed discrete subspace of \(\mathbb{T}[X] \), \(|X| \leq p(\mathbb{T}[X]) \).

Therefore, (1) is clear.

(2) By Proposition 1, this is trivial.

(3) From

\[\chi(X) = \pi\chi(\mathbb{T}[X]) \leq \pi(\mathbb{T}[X]) \quad \text{and} \quad |X| = \text{d}(\mathbb{T}[X]) \leq \pi(\mathbb{T}[X]), \]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
we have $\chi(X) |X| \leq \pi(\mathcal{F}[X]) \leq w(\mathcal{F}[X])$. On the other hand,

$$w(\mathcal{F}[X]) \leq \chi(\mathcal{F}[X]) |\mathcal{F}[X]|$$

is always true. Therefore, by (1) and (2), (3) is proved.

(4) Since $\psi(\mathcal{F}[X]) \leq psw(\mathcal{F}[X])$ is well known, we will prove $psw(\mathcal{F}[X]) \leq \psi(X)$ only. For each $A \in \mathcal{F}[X]$, there is a local ψ-base $\mathcal{B}(A)$ of A with $|\mathcal{B}(A)| \leq \psi(\mathcal{F}[X]) = \psi(X)$. Then, $\mathcal{B} = \{[A, U] : A \in \mathcal{F}[X], U \in \mathcal{B}(A)\}$ is a pseudo base of $\mathcal{F}[X]$. Let $S \in \mathcal{F}[X]$, $S \subseteq [A, U]$ if $A \subset S \subset A$. Since $|S| < \omega$, $\{A : \emptyset \neq A \subset S\}$ is finite. Therefore, $\text{ord}(S, \mathcal{B}) = \{([A, U] \in \mathcal{B} : S \subseteq [A, U]) \leq \psi(X)$. Thus we have $\text{ord}(\mathcal{B}) = \sup(\text{ord}(S, \mathcal{B}) : S \in \mathcal{F}[X]) \leq \psi(X)$. Therefore, $psw(\mathcal{F}[X]) \leq \psi(X)$.

(5) $\psi(X) = \omega$ if $\psi(\mathcal{F}[X]) = \omega$ appears in [L] and [P], and $\psi(\mathcal{F}[X]) \leq \psi_{\omega}(\mathcal{F}[X])$ is well known. Therefore, only $\psi_{\omega}(\mathcal{F}[X]) \leq \psi(\mathcal{F}[X]) = \omega$ needs proof. Let $\psi(\mathcal{F}[X]) = \omega$ and $\mathcal{B}(A) = \{U_n(A) : n < \omega\}$ be a decreasing countable local ψ-base of each $A \in \mathcal{F}[X]$. We can assume that $U_n(A)$ is of the form $[A, V]$, where V is an open nbd of A in X. Since $B_n = \cup \{U_n(A) \times U_n(A) : A \in \mathcal{F}[X]\}$ is an open nbd of the diagonal $\Delta(\mathcal{F}[X]) = \{(A, A) : A \in \mathcal{F}[X]\}$ in $\mathcal{F}[X]^2 = \mathcal{F}[X] \times \mathcal{F}[X]$, $\mathcal{B} = \{B_n : n < \omega\}$ is a countable local ψ-base of $\Delta(\mathcal{F}[X])$ in $\mathcal{F}[X]^2$. For, let $(S, T) \in \mathcal{F}[X]^2 \setminus \Delta(\mathcal{F}[X])$. We may assume that there is an element $t \in T \setminus S$. For each nonempty $A \subseteq S$, there exists $n(A) < \omega$ such that $\{t\} \notin \cup \{U_n(A) : A \in \mathcal{F}[X]\}$. If we put $n_0 = \max\{n(A) : \emptyset \neq A \subseteq S\}$, then $T \notin \cup \{U_n(A) : \emptyset \neq A \subseteq S\}$ for each $n \geq n_0$. Therefore, $(S, T) \notin B_{n_0}$ and \mathcal{B} is a local ψ-base of $\Delta(\mathcal{F}[X])$ in $\mathcal{F}[X]^2$. Therefore, we have $\psi_{\omega}(\mathcal{F}[X]) = \omega$.

(6) Since $c(\mathcal{F}[X]) \leq nw(X)$ appears in [L], it suffices to show $hd(X) hL(X) \leq c(\mathcal{F}[X])$.

Let us assume $hL(X) > \tau$. Then, there are a subspace Y of X and an open covering \mathcal{G} of Y such that $Y \subseteq \cup \mathcal{G}$ for each subfamily \mathcal{G}' of \mathcal{G} with $|\mathcal{G}'| \leq \tau$. We can assume that each element of \mathcal{G} is open in X. By transfinite induction, we can easily construct $\{x_\alpha : \alpha < \tau^+\} \subseteq Y$ and $\{G_\alpha : \alpha < \tau^+\} \subseteq \mathcal{G}$ with $x_\alpha \in G_\alpha \setminus \bigcup \{G_\beta : \beta < \alpha\}$ for each $\alpha < \tau^+$. If $\beta < \alpha < \tau^+$, since $x_\alpha \notin G_\beta$, we have $\{x_\beta, G_\beta \setminus \{x_\alpha, G_\alpha\} = \emptyset$. Thus, $\{\{x_\alpha, G_\alpha : \alpha < \tau^+\}$ is a pairwise disjoint family of nonempty open sets of $\mathcal{F}[X]$. Thus, we have $c(\mathcal{F}[X]) \geq \tau^+$ and $hL(X) \leq c(\mathcal{F}[X])$.

Let Y be a subspace of X. Consider the system \mathcal{B} of all sets of the form $[A, U]$ where $A \in \mathcal{F}[Y]$ and U is an open set of X containing A. Let \mathcal{B} be a pairwise disjoint maximal family of sets in \mathcal{B}. Then $D = \cup \{A : [A, U] \in \mathcal{B}\}$ is dense in Y. Because, assume there is $x \in Y \setminus \text{cl}_X D$. Then, there is an open nbd V of x in X such that $V \cap D = \emptyset$. Since $\{\{x, V\} \cap [A, U] \subseteq \emptyset$ for each $[A, U] \in \mathcal{B}$, $\mathcal{B} \cup \{\{x, V\}\}$ is a pairwise disjoint family of sets of \mathcal{B}. This contradicts the maximality of \mathcal{B}. Since $|D| \leq |\mathcal{B}| \leq c(\mathcal{F}[X])$, we have $d(Y) \leq c(\mathcal{F}[X])$. Thus, $hd(X) \leq c(\mathcal{F}[X])$ is proved. This completes the proof of Theorem 2.

Hajnal and Juhász studied conditions when $\mathcal{F}[X]$ has countable cellularity. Readers, who take interest in this case, refer to [HJ].

Since $\mathcal{F}[X]$ is regular [vD], we have the following:

Corollary 3. In the following, (1)–(5) are equivalent, and each of them implies (6).

1. X is countable.
2. $\mathcal{F}[X]$ is countable.
(3) $\mathbb{T}[X]$ is a cosmic space.
(4) $\mathbb{T}[X]$ is (hereditarily) separable.
(5) $\mathbb{T}[X]$ is (hereditarily) Lindelöf.
(6) $\mathbb{T}[X]$ is paracompact.

Lemma 4. If X is a paracompact Hausdorff space, then $L(X) \leq c(X)$.

Proof. Since each open covering of X has a σ-discrete open refinement, the lemma is clear.

Corollary 5. If $\nw(X) < |X|$ holds, then $\mathbb{T}[X]$ is not paracompact. In particular, if X is an uncountable separable metric space, then $\mathbb{T}[X]$ is not metrizable.

The following corollaries are also clear.

Corollary 6. If $\mathbb{T}[X]$ has $G_δ$-diagonal, then the pseudo character of X is $ω$.

Corollary 7. If $\mathbb{T}[X]$ has countable cellularity, then X is both hereditarily separable and hereditarily Lindelöf.

Theorem 8. Let $\langle ϕ \rangle$ be a cardinal function listed above except psw, $ψ_δ$ and $Ψ$. Then, we have $ϕ(X) ≤ ϕ(\mathbb{T}[X])$ for each space X.

Proof. $t(X) \leq t(\mathbb{T}[X])$ follows from Proposition 1. Proofs for other cardinal functions follow from Theorem 2.

Example 1. By (4) in Theorem 2, we have always $psw(\mathbb{T}[X]) ≤ psw(X)$. There is a compact Hausdorff GO-space X for which $psw(\mathbb{T}[X]) < psw(X)$ and $Ψ(\mathbb{T}[X]) < Ψ(X)$ hold. For example, let X be the lexicographic ordered square $[E, 3.12.3]$. Then $psw(\mathbb{T}[X]) = ψ_δ(X) = Ψ(X) = c > ω = ψ(X)$. Therefore, we have $psw(\mathbb{T}[X]) = ψ_δ(\mathbb{T}[X]) = Ψ(\mathbb{T}[X]) = c$.

Example 2. There is a compact Hausdorff GO-space X for which $hd(X)hL(X) < c(\mathbb{T}[X]) = nw(X)$ holds. In fact, let X be the two arrows space $[E, 3.10.C]$. That is, $X = \{(x, 0): 0 < x < 1\} \cup \{(x, 1): 0 < x < 1\}$ considered as a subspace of the lexicographic ordered square. Then, $hd(X) = hL(X) = ω < c = nw(X)$. Let us take a point $P(x) = (x, 0)$ in X. Since $U(x) = \{(x, 0), (0, 1)\} \cup \{(y, i): 0 < y < x, i = 0, 1\}$ is an open nbd of $P(x)$, $\{|(P(x), U(x)): 0 < x < 1\}$ is a disjoint family of open sets of $\mathbb{T}[X]$. Therefore, we have $c(\mathbb{T}[X]) = c$.

Example 3. There is a T_1-space X which has a finite subset A such that $X(A, \mathbb{T}[X]) < \max\{x(x, X): x \in A\}$ holds. Let X be the set of all lattice points (i, j) of positive integers with two ideal points p and q. The topology of X is defined by declaring each lattice point to be open, and by taking as open nbd of p sets of the form $X \setminus (B \cup \{q\})$ where B is any set of lattice points with at most finitely many points on each row, and as open nbd of q sets of the form $X \setminus (C \cup \{p\})$ where C is any set of lattice points selected from at most finitely many rows. Then X is a compact T_1-space and $x(p, X) > ω$ holds [SS, 99]. Let $A = \{p, q\}$. If U is a nbd of A, then $|X \setminus U| < ω$. Therefore, $B = \{[A, U]: A \subset U \subset X, |X \setminus U| < ω\}$ is a nbd base of A in $\mathbb{T}[X]$. Since $|B| = ω$, we have $x(A, \mathbb{T}[X]) < x(p, X)$.

Concerning theorems and examples, we ask the following.

Question 1. Let $ϕ ∈ \{Ψ, ψ_δ\}$. Does $ϕ(\mathbb{T}[X]) ≤ ϕ(X)$ hold for each space X?
Question 2. Determine exactly t, Ψ and ψ_A on $\mathcal{F}(X)$ in terms of those on X. Lutzer asked this question for the cellularity c [L].

References