Monadic properties of uniformities
HTML articles powered by AMS MathViewer
- by D. G. Coyle and M. E. Szabo
- Proc. Amer. Math. Soc. 89 (1983), 346-350
- DOI: https://doi.org/10.1090/S0002-9939-1983-0712649-7
- PDF | Request permission
Abstract:
We introduce the nonstandard concept of a monadic set and characterize diagonal and covering uniformities in terms of such sets. This formulation relates the two fundamental aspects of uniformities directly and obviates the need for bases. We illustrate the utility of our approach by showing that it leads to significant simplifications of the standard proofs characterizing pseudo-metrizable uniform and uniformizable topological spaces.References
- P. Alexandroff and P. Urysohn, Une condition nécessaire et suffisante qu’une classe $(L)$ soit une classe $(D)$, C. R. Acad. Sci. Paris 177 (1923), 1274-1277.
- W. A. J. Luxemburg, A general theory of monads, Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967) Holt, Rinehart and Winston, New York, 1969, pp. 18–86. MR 0244931
- Michael M. Richter, Ideale Punkte, Monaden und Nichtstandard-Methoden, Friedr. Vieweg & Sohn, Braunschweig, 1982 (German). MR 687517
- Abraham Robinson, Non-standard analysis, North-Holland Publishing Co., Amsterdam, 1966. MR 0205854
- K. D. Stroyan and W. A. J. Luxemburg, Introduction to the theory of infinitesimals, Pure and Applied Mathematics, No. 72, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0491163 A. Weil, Sur les espaces à structure uniforme et sur la topologie générale, Actualités Sci. Indust., No. 551, Hermann, Paris, 1937.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 346-350
- MSC: Primary 54J05; Secondary 03H05, 54E15, 54E25
- DOI: https://doi.org/10.1090/S0002-9939-1983-0712649-7
- MathSciNet review: 712649