Note on the residues of the singularities of a Riemannian foliation
HTML articles powered by AMS MathViewer
- by Xiang Ming Mei
- Proc. Amer. Math. Soc. 89 (1983), 359-366
- DOI: https://doi.org/10.1090/S0002-9939-1983-0712652-7
- PDF | Request permission
Abstract:
We generalize the result of Lazarov and Pasternack [3] on the residues of the singularities of a Riemannian foliation and give an explicit formula of the residues of the connected components of the singular set of a Riemannian foliation without any restriction on the dimension of the connected components of its singular set. This formula is also the generalization of the residues formula of the zero set of the Killing vector field due to Baum and Cheeger [6].References
- Paul Baum and Raoul Bott, Singularities of holomorphic foliations, J. Differential Geometry 7 (1972), 279–342. MR 377923
- Paul Baum, Structure of foliation singularities, Advances in Math. 15 (1975), 361–374. MR 377125, DOI 10.1016/0001-8708(75)90142-5
- Connor Lazarov and Joel Pasternack, Residues and characteristic classes for Riemannian foliations, J. Differential Geometry 11 (1976), no. 4, 599–612. MR 445514
- Seiki Nishikawa, Residues and characteristic classes for projective foliations, Japan. J. Math. (N.S.) 7 (1981), no. 1, 45–108. MR 728329, DOI 10.4099/math1924.7.45
- Shoshichi Kobayashi, Transformation groups in differential geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70, Springer-Verlag, New York-Heidelberg, 1972. MR 0355886
- Paul Baum and Jeff Cheeger, Infinitesimal isometries and Pontryagin numbers, Topology 8 (1969), 173–193. MR 238351, DOI 10.1016/0040-9383(69)90008-1
- J. S. Pasternack, Foliations and compact Lie group actions, Comment. Math. Helv. 46 (1971), 467–477. MR 300307, DOI 10.1007/BF02566859
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 359-366
- MSC: Primary 53C12; Secondary 57R30
- DOI: https://doi.org/10.1090/S0002-9939-1983-0712652-7
- MathSciNet review: 712652