A COMPOSITION THEOREM FOR δ-CODES

C. H. YANG

Abstract. If Golay complementary sequences (or equivalently a two-symbol δ-code) of length \(n \) and a Turyn δ-code of length \(t \) exist then four-symbol δ-codes of length \((2n + 1)t \) can be composed. Therefore new families of Hadamard matrices of orders \(4uw \) and \(20uw \) can be constructed, where \(u = (2^{a+1}10^b26^c + 1) \) for odd \(t \leq 59 \) or \(t = 2^{d}10^{e}26^{f} + 1 \) (all \(a, b, c, d, e, \) and \(f \geq 0 \)), and \(w \) is the order of Williamson matrices.

The following result has been obtained: If Golay complementary sequences of length \(s \) and Turyn base sequences for length \(t \) (see [1]) exist, then four-symbol δ-codes of length \((2s + 1)t \) can be composed. Consequently four-symbol δ-codes of length \(u = (2^{a+1}10^b26^c + 1)t \) can be constructed for odd \(t \leq 59 \) or \(t = 2^{d}10^{e}26^{f} + 1 \), where \(a, b, c, d, e \) and \(f \) are nonnegative integers. Therefore new families of Hadamard matrices of orders \(4uw \) and \(20uw \) can be constructed, where \(w \) is the order of Williamson matrices.

In this paper, many notations and definitions are the same as in [1]. Turyn base sequences for length \(t = 2m + p \) (abbreviated as TBS(\(t \))) are four \((1, -1)\)-sequences \((A, B; C, D)\), respectively, of lengths \(m + p \) and \(m \) pairwise such that

\[
(1) \quad A = (a_k)_{m+p}, \quad B = (b_k)_{m+p}, \quad C = (c_k)_m \quad \text{and} \quad D = (d_k)_m
\]

having zero auto-correlation sum, i.e. \(a(j) + b(j) + c(j) + d(j) = 0 \) for \(j \neq 0 \), where \(p(j) = \sum_{k=0}^{n-1} p_k p_{k+j} \) for \(P = (p_k)_n \). Another characterization of TBS(\(t \)) is that the associated polynomials satisfy

\[
(2) \quad |A|^2 + |B|^2 + |C|^2 + |D|^2 = 2t, \quad \text{for any} \ z \in K = \{z \in \mathbb{C} : |z| = 1\},
\]

where we use the same notation \(P \) to represent a given sequence \((p_k)_n \) and its associated polynomial \(P(z) = \sum_{k=0}^{n-1} p_k z^{k-1} \); \(K \) is the unit circle and \(\mathbb{C} \) is the complex field.

Turyn sequences of length \(t \) (abbreviated as TS(\(t \))) or a four-symbol δ-code of length \(t \) are four \((0, \pm 1)\)-sequences \((I, J, K, L)\) of length \(t \), where \(I = (i_h)_t, \quad J = (j_h)_t, \quad K = (k_h)_t \) and \(L = (l_h)_t \), satisfying \(i(h) + j(h) + k(h) + l(h) = 0 \) for \(h \neq 0 \) and \(|i_h| + |j_h| + |k_h| + |l_h| = 1 \) for each \(h \). It is known that the associated polynomials TS(\(t \)) satisfy \(|I|^2 + |J|^2 + |K|^2 + |L|^2 = t \) for any \(z \in K \).

A regular δ-code of length \(u \) (abbreviated as RD(\(u \))) is a quad \((Q, R, S, T)\) of \((0, \pm 1)\)-sequences of length \(u \) such that

\[
(3) \quad Q = I + J, \quad R = I - J, \quad S = K + L \quad \text{and} \quad T = K - L,
\]
which is derived from \(TS(u) \): \((I, J, K, L)\). The existence of \(RD(u) \) and that of \(TS(u) \) are equivalent since, from (3), we also have \(I = (Q + R)/2, J = (Q - R)/2, K = (S + T)/2 \) and \(L = (S - T)/2 \). We note here that the associated polynomials of \(RD(u) \) satisfy

\[
|Q|^2 + |R|^2 + |S|^2 + |T|^2 = 2u \quad \text{for any } z \in \mathbb{K},
\]

and

(5) either \(q_k r_k = \pm 1 \) and \(s_k = t_k = 0 \), or \(q_k = r_k = 0 \) and \(s_k t_k = \pm 1 \), for each \(k \), where \(q_k, r_k, s_k, \) and \(t_k \) are the \(k \)th term of the sequences \(Q, R, S, \) and \(T \), respectively.

We first prove the following **Lagrange identity theorem for polynomials**, which is the key to our constructions for \(RD(u) \).

Theorem 1. Let \(A, B, C, D, E, F, G \) and \(H \) be polynomials in \(z \in \mathbb{K} \) with real coefficients. Also let

\[
\begin{align*}
W &= -B'E + AF' + CG + DH, \\
X &= A'E + BF' + DG' - CH', \\
Y &= -D'E - CF + AG' - BH, \\
Z &= C'E - DF + BG + AH',
\end{align*}
\]

where \(P' = P(z^{-1}) \) for \(P = P(z) \). Then

\[
\]

Proof. Since

\[
|W|^2 + |X|^2 + |Y|^2 + |Z|^2 = WW' + XX' + YY' + ZZ' \quad \text{and}
\]

\[
\begin{align*}
W' &= -BE' + A'F + C'G' + D'H', \\
X' &= AE' + B'F + D'G - C'H, \\
Y' &= -DE' - C'F' + A'G - B'H', \\
Z' &= CE' - D'F' + B'G' + A'H',
\end{align*}
\]

by substituting the right-hand sides of (6) and (9) into that of (8), and by expansions, simplifications and regrouping, (7) can be derived.

Golay complementary sequences of length \(s \) (abbreviated as \(GCL(s) \)) are two \((L-1)\)-sequences: \(F = (f_k)_s \) and \(G = (g_k)_s \) having zero auto-correlation sum, \(f(j) + S(j) = 0 \) for \(j \neq 0 \). Another characterization of \(GCL(s) \) (see [2]) is that the associated polynomials satisfy \(|F|^2 + |G|^2 = 2s \) for any \(z \) in \(\mathbb{K} \). \(GCL(s) \) are known to exist for \(s = 2^a10^b26^c \), where \(a, b, \) and \(c \) are nonnegative integers (see [3]).

Theorem 2. Let \((A, B; C, D)\) be \(TBS(t) \) of (1) and \(F = (f_k)_s \) and \(G = (g_k)_s \) be \(GCL(s) \), where \(s = 2r \). Then the following \((Q, R, S, T)\) are the associated polynomials of \(RD((2s+1)t) \).

\[
\begin{align*}
Q &= (-B'E + AF' + CG)U, \\
S &= (-D'E - CF + AG')V, \\
R &= (A'E + BF' + DG')U, \\
T &= (C'E - DF + BG)V,
\end{align*}
\]
where $P = P(z)$, for $P = A, B, C, D,$ and $E = z^{(s+1)\tau-1}$,

$$F = \sum_{k=-r}^{r-1} f_{r+k+1} z^{(2k+1)\tau+M}, \quad G = \sum_{k=-r}^{r-1} g_{r+k+1} z^{(2k+1)\tau};$$

$M = m + p = t - m; \quad U = z^{(s-1)\tau+M}$, and $V = z^{st}.$

Proof. By applying Theorem 1 to (Q, R, S, T) and observing that $UU' = 1 = VV'$, $|F|^2 + |G|^2 = 2s$, $|E|^2 = 1$ and $H = 0$, we obtain, from (2),

$$|Q|^2 + |R|^2 + |S|^2 + |T|^2 = (|A|^2 + |B|^2 + |C|^2 + |D|^2)(|E|^2 + |F|^2 + |G|^2) = 2t(2s + 1),$$

for any z in K. Therefore, (4) is satisfied. And since

$$I' = \sum_{h=-r}^{r-1} f_{r-h} z^{-(2k+1)\tau-M} = \sum_{h=-r}^{r-1} f_{r-h} z^{(2k+1)\tau-M}$$

and

$$G' = \sum_{h=-r}^{r-1} g_{r-h} z^{-(2k+1)\tau} = \sum_{h=-r}^{r-1} g_{r-h} z^{(2k+1)\tau},$$

we have from ($*$)

($**$) $Q = \sum_{h=-r}^{r-1} (A_f_{r-h} z^{(2k+1)\tau} + C g_{r+h+1} z^{(2k+1)\tau+M}) z^{(s-1)\tau} - B'z^{2st+M-1},$

$$R = \sum_{h=-r}^{r-1} (B_f_{r-h} z^{(2k+1)\tau} + D g_{r-h} z^{(2k+1)\tau+M}) z^{(s-1)\tau} + A'z^{2st+M-1},$$

$$S = \sum_{h=-r}^{r-1} (A g_{r-h} z^{(2k+1)\tau} - C f_{r+h+1} z^{(2k+1)\tau+M}) z^{st} - D'z^{(2s+1)\tau-1},$$

$$T = \sum_{h=-r}^{r-1} (B g_{r+h+1} z^{(2k+1)\tau} - D f_{r+h+1} z^{(2k+1)\tau+M}) z^{st} + C'z^{(2s+1)\tau-1}.$$

Consequently, (5) is also satisfied. When $s = 1$, Theorem 2 takes the following form: i.e. $r = \frac{1}{2}$, thus $F = z^M$ and $G = 1$, if $f_1 = g_1 = 1$.

Corollary. When $s = 1$, we let $F = z^M$, $G = 1$, and E, U and V be as in Theorem 2. Then (Q, R, S, T) is $RD(3t)$.

For example, from the corollary, we obtain $RD(3t)$ as follows:

$$Q = (A, C; 0, 0; -B', 0), \quad S = (0, 0; A, -C; 0, -D'),$$

$$R = (B, D; 0, 0; A', 0), \quad T = (0, 0; B, -D; 0, C').$$

We note here that the above (Q, R, S, T) corresponds to $(f, g^*, e, -h^*)$ in the proof of the theorem of [1]. By setting $F = (-1, 1)$ and $G = (1, 1)$ as $GCL(2)$, we obtain the following $RD(5t)$ from ($**$).

$$Q = (A, C; 0, 0; -A, 0; -B', 0), \quad S = (0, 0; A, C; 0, 0; A, -C; 0, -D'),$$

$$R = (B, D; 0, 0; -B, D; 0, 0; A', 0), \quad T = (0, 0; B, D; 0, 0; B, -D; 0, C').$$
In general, we obtain the following $RD((2s + 1)t)$ from Theorem 2, (**).

\[(A_{f_1}, C_{g_1}; 0, 0; A_{f_2}, C_{g_2}; 0, 0; \ldots; A_{f_s}, C_{g_s}; 0, 0; -B', 0),\]
\[(B_{f_1}, D_{g_1}; 0, 0; B_{f_2}, D_{g_2}; 0, 0; \ldots; B_{f_s}, D_{g_s}; 0, 0; A', 0),\]
\[(0, 0; A_{g_1}, -C_{f_1}; 0, 0; A_{g_2}, -C_{f_2}; 0, 0; \ldots; 0, 0; A_{g_s}, -C_{f_s}; 0, -D'),\]
\[(0, 0; B_{g_1}, -D_{f_1}; 0, 0; B_{g_2}, -D_{f_2}; 0, 0; \ldots; 0, 0; B_{g_s}, -D_{f_s}; 0, C').\]

References

2. *_, Hadamard matrices, finite sequences, and polynomials defined on the unit circle*, Math. Comp. **33** (1979), 688–693.

Department of Mathematical Sciences, State University of New York, Oneonta, New York 13820