A SMOOTH SCISSORS CONGRUENCE PROBLEM

PETER GREENBERG

Abstract. Classifying space techniques are used to solve a smooth version of the classical scissors congruence problem.

1. Introduction.

1.1 The classical problem [8]. Let B be the abelian group generated by the set of polygons in the plane, modulo the subgroup generated by elements $P - \Sigma P_i$, where $P \sqcup P_i$ is a subdivision of a polygon P. Any subgroup G of the group of affine motions of the plane acts on B. The problem is to compute the quotient group $H_0(G; B)$ of B by the subgroup generated by elements $gb - b$, with $g \in G$, $b \in B$.

1.2 A smooth version. Our purpose is to state and solve a smooth version of the problem. Instead of polygons transforming under affine maps, we consider smooth curves transforming under diffeomorphisms.

The basic tool is a space M (2.1) whose first singular integral homology group $H_1 M$ is a smooth version of the group B. Diffeomorphisms of the plane act on M and hence on $H_1 M$. We employ a slight modification of a standard spectral sequence in our calculations.

1.3 Organization. §2 states the key definitions and results; the major proof is in §3. §4 contains the proof of a lemma, and §5 discusses the spectral sequence.

I would like to thank the referee for suggestions and for a simplification in the proof of Lemma 3.5.

2. Results. We require some definitions.

2.1 Definition. Let M be the one-manifold of C^∞ nonsingular curves in \mathbb{R}^2, defined as

$$M = \bigsqcup (a, b)_f / \sim$$

where for each C^∞ nonsingular embedding f of an interval (a, b) to \mathbb{R}^2 we take a copy $(a, b)_f$ of (a, b), and where if $x \in (a, b)_f$ and $y \in (c, d)_g$ we set $x \sim y$ if and only if there exist neighborhoods U of x in $(a, b)_f$ and V of y in $(c, d)_g$ and a (not necessarily orientation preserving) diffeomorphism $h: U \to V$ such that $f|_U = g \circ h$.

M is a one-dimensional C^∞ nonorientable non-Hausdorff manifold; let $i: M \to \mathbb{R}^2$ denote the obvious immersion. If $g: U \to V$ is a diffeomorphism between open sets in \mathbb{R}^2, let $i^*g: i^{-1}U \to i^{-1}V$ denote the resulting diffeomorphism between the open...
subsets $i^{-1}U$ and $i^{-1}V$ of M. Let $H_i M$ denote the first singular integral homology group of M.

2.2 Definition. Let $H_0 (\Gamma^\infty; H_i M)$ (resp. $H_0 (\Gamma^0; H_i M)$) denote the quotient group of $H_i M$ by the subgroup generated by elements $(i^* g)*b - b$, where $g: U \to V$ is an orientation preserving (resp. area and orientation preserving) C^∞ diffeomorphism between open subsets of R^2, and $b \in H_i M$ has support in $i^{-1}U$.

Our problem is to compute the groups just defined.

2.3 Example. The Figure 8 curve (with orientation given by the arrow in Figure 1) defines an element of $H_i M$. Here is one demonstration that this element is 0 in $H_0 (\Gamma^0; H_i M)$. The dotted curve indicates a part of M used in each step.

\[
\begin{align*}
\circ & \quad \circ \\
\circ & \quad \circ \\
\circ & \quad \circ \\
\circ & \quad \circ
\end{align*}
\]

$= 0$

Figure 1

2.4 Definition. (i) The **winding maps** $W: H_0 (\Gamma^\infty; H_i M) \to Z$, $W: H_0 (\Gamma^0; H_i M) \to Z$. The tangent line field of M defines a map from M to R^1, and hence from $H_i M$ to $H_i R^1$. Picking an isomorphism of $H_i R^1$ with Z gives a map $H_i M \to Z$, which pushes down to the maps W.

(ii) The **area map** $A: H_0 (\Gamma^0; H_i M) \to R$: If $b \in H_i M$, let $A(b) = \int_{[b]} x \, dy$ (here $[b]$ denotes the one-current of R^2 associated to b). $A(b)$ is the “algebraic area enclosed by b”. A pushes down to the map A.

2.5 Theorem. The maps $W: H_0 (\Gamma^\infty; H_i M) \to Z$ and $W \oplus A: H_0 (\Gamma^0; H_i M) \to Z \oplus R$ are isomorphisms.

2.6 Remark. We compare 2.5 with the classical result. Let B (as in 1.1) be the abelian group generated by polygons in the plane, modulo the subgroup generated by subdivisions. Let $AG1$ and $AS1$ denote the group of orientation preserving affine maps of the plane and the subgroup of area and orientation preserving maps, respectively. Then $[B] H_0 (AG1; B) = 0$, and area gives an isomorphism $A: H_0 (AS1; B) \to R$. There is no “winding map”.

2.7 Remark. If in Definition 2.1 we glue the intervals $(a, b)_t$ together using orientation preserving diffeomorphisms h, we obtain a double cover \tilde{M} of M, the one-manifold of C^∞ oriented nonsingular curves in R^2. There are winding maps $W: H_0 (\Gamma^\infty; H_i \tilde{M}) \to Z$ and $W: H_0 (\Gamma^0; H_i \tilde{M}) \to Z$ defined via the tangent unit vector map from M to S^1, and an area map $A: H_0 (\Gamma^0; H_i \tilde{M}) \to R$. One can prove that $W: H_0 (\Gamma^\infty; H_i \tilde{M}) \to Z$ and $W \oplus A: H_0 (\Gamma^0; H_i \tilde{M}) \to Z \oplus R$ are isomorphisms.

3. Proof of 2.5. We shall prove that $W: H_0 (\Gamma^0; H_i M) \to Z \oplus R$ is an isomorphism. The proof for $W: H_0 (\Gamma^\infty; H_i M) \to Z$ is almost identical (see Remark 3.6).

Recall that a topological category is a small category whose sets of objects and morphisms are topologized such that the structure maps of the category are
300 PETER GREENBERG

continuous. The nerve of a topological category is a simplicial space; we use Segal’s “thick” realization (denoted $|| \cdot ||$ in [9, Appendix A]) to produce a classifying space functor $| \cdot |$ from topological categories to topological spaces.

3.1 Definition. Let Γ^Ω be the topological category whose space of objects is \mathbb{R}^2, and whose space of morphisms, denoted Γ^Ω_i, is the space of germs of C^∞ area and orientation preserving diffeomorphisms of \mathbb{R}^2, with the sheaf topology. Let $D, R: \Gamma^\Omega_i \to \mathbb{R}^2$ denote the domain and range maps of Γ^Ω.

The classifying space $| \Gamma^\Omega |$ is the “classifying space for C^∞ codimension 2 foliation, with a transverse orientation and area form”.

3.2 Definition. Let $\Gamma^\Omega \setminus M$ be the topological category of the action Γ^Ω on M; the space of objects of $\Gamma^\Omega \setminus M$ is M, and the space of morphisms $(\Gamma^\Omega \setminus M)_i$ of $\Gamma^\Omega \setminus M$ is the pullback:

\[
\begin{array}{ccc}
(\Gamma^\Omega \setminus M)_1 & \to & \Gamma^\Omega_i \\
\downarrow D & & \downarrow D \\
M & \to & \mathbb{R}^2
\end{array}
\]

Let $i: \Gamma^\Omega \setminus M \to \Gamma^\Omega$ denote the continuous functor covering the map i.

Now we claim [2]

3.3 Proposition. There is a first quadrant spectral sequence E_{pq}^*, with differential d^n of bidegree $(-n, n - 1)$, which abuts to $H_{p+1}(\Gamma^\Omega \setminus M)$ and such that $E^{2}_{p0} = H_p|\Gamma^\Omega|$ and $E^{2}_{01} = H_0(\Gamma^\Omega; H_1 M)$.

The spectral sequence is discussed in §5. To apply it to the proof of 2.5 we need two lemmas.

3.4 Lemma [4, 2.6 and 6, Lemma 1]. $H_1|\Gamma^\Omega| = 0$ and $H_2|\Gamma^\Omega| = \mathbb{Z} \oplus \mathbb{R}$.

3.5 Lemma. $H_0|\Gamma^\Omega \setminus M| = \mathbb{Z}/2$.

The proof of 3.5 is in §4.

Proof of Theorem 2.5. Let $K \oplus C: H_2|\Gamma^\Omega| \to \mathbb{Z} \oplus \mathbb{R}$ be the isomorphism of Lemma 3.4. Considering the spectral sequence 3.3, 2.5 will follow from the facts that $A \circ d^2 \circ C^{-1}: \mathbb{R} \to \mathbb{R}$ is an isomorphism and that the image of $W \circ d^2 \circ K^{-1}$ is $2\mathbb{Z}$ (here d^2 is the differential for the E^2-term). These facts will follow from an explicit description of $d^2: H_2|\Gamma^\Omega| \to H_0(\Gamma^\Omega; H_1 M)$ for elements of $H_2|\Gamma^\Omega|$ represented by closed oriented two-manifolds with an area form.

Let X be such a two-manifold, and let $[X] \in H_2|\Gamma^\Omega|$ be the corresponding homology class; $K[X]$ is the Euler characteristic of X, and $C[X]$ is the area of X. To describe $d^2[X]$, give a C^∞ cell decomposition $X = \bigsqcup \sigma_i$ of X as in Figure 2. Each cell σ_i can be mapped to \mathbb{R}^2 by an orientation and area preserving diffeomorphism f_i; the boundary of $f_i \sigma_i$, with orientation inherited from X, gives a cycle $[\partial f_i \sigma_i] \in H_1 M$. Then $d^2[X] = \sum [\partial f_i \sigma_i]$ is well defined in $H_0(\Gamma^\Omega; H_1 M)$ and independent of the choice of C^∞ cell decomposition of X.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Clearly \(A \circ d^2 \circ C^{-1} \) is the identity, and a computation with \(X = S^2 \) shows that the image of \(W \circ d^2 \circ K^{-1} \) is 2\(\mathbb{Z} \). This concludes the proof of 2.5.

3.6 Remark. The proof that \(W: H_0(\Gamma^\infty; H_1 M) \to \mathbb{Z} \) is an isomorphism follows §3, except for the substitution of the following lemma for Lemma 3.4.

3.7 Lemma [4, Theorem 3]. \(H_1 |\Gamma^\infty| = 0 \) and \(H_2 |\Gamma^\infty| = \mathbb{Z} \).

4. Proof of 3.5. The real line \(\mathbb{R} \), embedded in \(\mathbb{R}^2 \) as the \(x \)-axis is a submanifold of \(M \). Let \(N \) be the discrete monoid of \(\Gamma^\Omega \backslash M \)-embeddings of the line; as a set
\[
N = \{ s: \mathbb{R} \to (\Gamma^\Omega \backslash M) \mid D \circ s = \text{id} \text{ and } R \circ s(\mathbb{R}) \subseteq \mathbb{R} \}.
\]

The translates of \(\mathbb{R} \) by \((\Gamma^\Omega \backslash M)_1 \) generate the topology of \(M \), so by Theorem 1.2(ii) of [1] there is a weak homotopy equivalence \(BN \to |\Gamma^\Omega \backslash M| \). Let us show that \(\pi_1 BN = \mathbb{Z}/2 \).

Let \(K \) be the submonoid of \(N \) consisting of elements which preserve the orientation of the line; it is not hard to see that the exact sequence \(K \to N \to \mathbb{Z}/2 \) gives a homotopy fibration \(BK \to BN \to B\mathbb{Z}/2 \). Since \(\pi_2 B\mathbb{Z}/2 = 0 \), 3.5 will follow when we show that \(\pi_1 BK = 0 \).

So we show that the homomorphic image of \(K \) in any group is trivial. Now \(K \) is generated by elements \(k \) which are the identity section in some open set \(U \) (after [7], 3.1). But for any \(U \) there is an \(m \in K \) such that \(m(\mathbb{R}) \subseteq U \); therefore \(km = m \) and \(k \) must map to the identity of any group. So all of \(K \) must map to the identity.

5. The spectral sequence 3.3. There is a spectral sequence for the action of a pseudogroup on a space, constructed in [2], which generalizes the spectral sequence for the action of a group on a space. The case at hand is an example of its application. We sketch the construction.

Let \(C \) be the discrete category whose objects are contactible open subsets of \(\mathbb{R}^2 \), with morphisms area and orientation preserving embeddings between open sets. Note that (as in [8, §1]) there is a weak homotopy equivalence between \(|C| \) and \(|\Gamma^\Omega| \).

Now recall the immersion \(i: M \to \mathbb{R}^2 \). Let \(S_q \) denote the complex of abelian group valued functors of \(C \), where for \(U \) an open subset of \(\mathbb{R}^2 \), \(S_q U = S_q(i^{-1} U) \), where \(S_q \) is the usual singular \(q \)-chain functor. The spectral sequence for the complex \(S_q \) of functors satisfies 3.3. In particular, \(E^2_{p0} = H_p |\Gamma^\Omega| \) because \(i^{-1} U \) is connected if \(U \) is connected.
Bibliography

Department of Mathematical Sciences, North Dakota State University, Fargo, North Dakota 58105