A smooth scissors congruence problem
HTML articles powered by AMS MathViewer
- by Peter Greenberg
- Proc. Amer. Math. Soc. 89 (1983), 298-302
- DOI: https://doi.org/10.1090/S0002-9939-1983-0712656-4
- PDF | Request permission
Abstract:
Classifying space techniques are used to solve a smooth version of the classical scissors congruence problem.References
- P. Greenberg, A model for groupoids of homeomorphisms, Thesis, M.I.T., Cambridge, Mass., 1982.
—, Extension and restriction for manifolds, preprint, 1982.
- A. Haefliger, Feuilletages sur les variétés ouvertes, Topology 9 (1970), 183–194 (French). MR 263104, DOI 10.1016/0040-9383(70)90040-6
- André Haefliger, Homotopy and integrability, Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 133–163. MR 0285027
- John N. Mather, Integrability in codimension $1$, Comment. Math. Helv. 48 (1973), 195–233. MR 356085, DOI 10.1007/BF02566122
- Dusa McDuff, On groups of volume-preserving diffeomorphisms and foliations with transverse volume form, Proc. London Math. Soc. (3) 43 (1981), no. 2, 295–320. MR 628279, DOI 10.1112/plms/s3-43.2.295
- J. Palis and S. Smale, Structural stability theorems, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 223–231. MR 0267603 C.-H. Sah, Hilbert’s third problem: scissors congruence, Pitman, London, 1979.
- Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293–312. MR 353298, DOI 10.1016/0040-9383(74)90022-6
- Graeme Segal, Classifying spaces related to foliations, Topology 17 (1978), no. 4, 367–382. MR 516216, DOI 10.1016/0040-9383(78)90004-6
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 298-302
- MSC: Primary 57R30; Secondary 51M20, 58F99
- DOI: https://doi.org/10.1090/S0002-9939-1983-0712656-4
- MathSciNet review: 712656