Optimal linear extensions by interchanging chains
HTML articles powered by AMS MathViewer
- by Ivan Rival
- Proc. Amer. Math. Soc. 89 (1983), 387-394
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715851-3
- PDF | Request permission
Abstract:
For a finite ordered set $P$ how can a linear extension $L = {C_1} \oplus {C_2}$ be constructed which minimizes the number $m$ of chains ${C_i}$ of $P$? While this question remains largely unanswered we show that a natural "greedy" algorithm is actually optimal for a far wider class of ordered sets than was hitherto suspected.References
- G. Chaty and M. Chein, Ordered matching and matchings without alternating cycles in bipartite graphs, Utilitas Math. 16 (1979), 183–187. MR 556990
- M. Chein and M. Habib, The jump number of dags and posets: an introduction, Ann. Discrete Math. 9 (1980), 189–194. MR 597371, DOI 10.1017/s0001867800043305
- Ivan Rival (ed.), Ordered sets, NATO Advanced Study Institute Series C: Mathematical and Physical Sciences, vol. 83, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1982. MR 661289
- O. Cogis and M. Habib, Nombre de sauts et graphes série-parallèles, RAIRO Inform. Théor. 13 (1979), no. 1, 3–18, ii (French, with English summary). MR 525454, DOI 10.1051/ita/1979130100031
- R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. (2) 51 (1950), 161–166. MR 32578, DOI 10.2307/1969503
- D. Duffus, I. Rival, and P. Winkler, Minimizing setups for cycle-free ordered sets, Proc. Amer. Math. Soc. 85 (1982), no. 4, 509–513. MR 660592, DOI 10.1090/S0002-9939-1982-0660592-3
- Gerhard Gierz and Werner Poguntke, Minimizing setups for ordered sets: a linear algebraic approach, SIAM J. Algebraic Discrete Methods 4 (1983), no. 1, 132–144. MR 689874, DOI 10.1137/0604016
- P. A. Grillet, Maximal chains and antichains, Fund. Math. 65 (1969), 157–167. MR 244112, DOI 10.4064/fm-65-2-157-167
- B. Leclerc and B. Monjardet, Ordres “C. A. C.”, Fund. Math. 79 (1973), no. 1, 11–22 (French). MR 319823, DOI 10.4064/fm-79-1-11-22 R. Pulleyblank (1982), On minimizing setups in precedence constrained scheduling, Discrete Applied Math. E. Szpilrajn (1930), Sur l’extension de l’ordre partiel, Fund. Math. 16, 386-389. Valdes (1978), Parsing flowcharts and series-parallel graphs, Technical Report STAN-CS-78-682, Stanford.
- Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler, The recognition of series parallel digraphs, SIAM J. Comput. 11 (1982), no. 2, 298–313. MR 652904, DOI 10.1137/0211023
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 387-394
- MSC: Primary 06A10; Secondary 06A05, 90B35
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715851-3
- MathSciNet review: 715851