Equimultiplicity and hyperplanarity
HTML articles powered by AMS MathViewer
- by S. B. Mulay
- Proc. Amer. Math. Soc. 89 (1983), 407-413
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715854-9
- PDF | Request permission
Abstract:
Let $R$ be an excellent regular local domain containing a field. Let $F$ be a nonzero principal ideal in $R$ contained in $m(R)$. Then the $2$-codimensional equimultiple locus of $(R,F)$ is hyperplanar.References
- Shreeram S. Abhyankar, Good points of a hypersurface, Adv. in Math. 68 (1988), no. 2, 87–256. MR 934366, DOI 10.1016/0001-8708(88)90015-1
- Shreeram Shankar Abhyankar, Local analytic geometry, Pure and Applied Mathematics, Vol. XIV, Academic Press, New York-London, 1964. MR 0175897
- Shreeram Shankar Abhyankar, Resolution of singularities of embedded algebraic surfaces, Pure and Applied Mathematics, Vol. 24, Academic Press, New York-London, 1966. MR 0217069
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
- Masayoshi Nagata, Local rings, Robert E. Krieger Publishing Co., Huntington, N.Y., 1975. Corrected reprint. MR 0460307
- R. Narasimhan, Hyperplanarity of the equimultiple locus, Proc. Amer. Math. Soc. 87 (1983), no. 3, 403–408. MR 684627, DOI 10.1090/S0002-9939-1983-0684627-8
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 407-413
- MSC: Primary 14B05; Secondary 13H05, 13H15
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715854-9
- MathSciNet review: 715854