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EQUIMULTIPLICITY AND HYPERPLANARITY

S. B. MULAY

Abstract. Let R be an excellent regular local domain containing a field. Let F be a

nonzero principal ideal in R contained in m(R). Then the 2-codimensional equimul-

tiple locus of (R, F) is hyperplanar.

In this article our aim is to study the equimultiple locus of a hypersurface

singularity in characteristic p. In order to explain the problem of hyperplanarity we

begin with the following important observation in characteristic zero. Consider a

nonzero principal ideal F in the ring R — K [[ X, Z]] where X stands for ( Xx,..., Xn ).

Assume FR — (Zd + axZd~x + ■ ■ ■ +ad)R and ordR F — d. Then for any irreduc-

ible component of the equimultiple locus defined by a prime ideal P in R, i.e., for

any P with F E P(d), we have D'ZF E P(i/_,), where Dz is the usual partial derivative

with respect to Z. In particular, for i = d — 1, we obtain d\Z + (d — l)\ax to be an

element of P. Thus, dividing by c7! we have Z + ax/d in P. Since Z + ax/d is a

regular parameter of R, we interpret this as saying that each irreducible component

of the equimultiple locus (of F in R ) is hyperplanar. From its expression it is evident

that Z + ax/d does not depend on P. Replacing the above computation by the

Tschirnhaussen transformation, Abhyanker [1] proved that if d is not divisible by the

characteristic of K then the equimultiple locus of F is hyperplanar; and he initiated

the investigation in the general case.

In the main theorem of this article we establish the hyperplanarity of that part of

the equimultiple locus which has codimension two in the ambient space. Obviously

for a surface F in three-space, this implies that the entire equimultiple locus is

hyperplanar. Our proof is existential in nature and does not produce an explicit

hyperplane. Another feature of this proof is that it does not depend on the

characteristic.

Finally we note that R. Narasimhan [6] has given an example of a prime ideal P in

K [[ X, Y, Z, W]] (Char Tí = 2) which defines an equimultiple curve for a three-fold F

and does not contain any regular parameter.

1. Preliminaries. All rings are assumed to be noetherian commutative with unity.

We follow the usual notations such as rad(7) for the radical of an ideal 7 in a ring

R, m(R) for the maximal ideal in a local ring R, and P(</) for the dth symbolic

power of a prime ideal P in a domain R, etc.

-
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1.1 Equimultiple locus. Let P be a domain and F a principal ideal in R. For any

positive integer d let II(P, F, d) = {P G Spec(P)|P C P(d)), and let n'(P, F, d)

= (P G n(P, F, c7)|dim RP = i) denote the i-codimensional part of n(P, F, d).

If P is a regular local domain and Pis a nonzero principal ideal contained in m(R),

then let E(P, P) = II(P, P, ord* and P) and E'(P, F) = U'(R, F, ord« F). In this

case we call E(P, F) the equimultiple locus of (P, F) and E'(P, F) the i-codimen-

sional equimultiple locus of (R, F). For any subset E of Spec(P), by 7(P) we

denote the intersection of all elements of E. Note that 7(£) is a radical ideal in R.

Let A be an overdomain of R and E a subset of Spec(P). We set EA = {P G

Spec(/1) | P is a minimal prime divisor of QA for some Q E E).

1.2 Closedness of equimultiple locus. Let R be an excellent regular domain and let P

be a nonzero nonunit principal ideal in P. Then Yl(R, F, d) is a closed subset of

Spec(P). In particular, if U\R, F, d) = 0, then I12(P, F, d) is a finite set. (See

40.3 of [5] and 34.A of [4].)

1.3 Hyperplanarity. Let R be a regular local domain. A subset E of Spec( R ) is said

to be hyperplanar if there exists a regular parameter z of R such that z E P for all P

in E.

(a) A subset E is hyperplanar iff 1(E) it M(R)2.

(b) If E is hyperplanar then every subset of E is hyperplanar.

(c) Let F be a nonzero principal ideal contained in M(R). If E'(P, F) ¥= 0, then

there exists a regular parameter z of P such that zrfP = FR, where c7 = ordÄ F; and

hence E(P, P) is hyperplanar.

1.4 Completion. With P and F as in 1.3, let P denote the completion of R, and let

P be a subset of Spec(P). Then we have:

(a) If £CE'(P, £), then £¿CE'(P, FR) (see 22.9 of [5]). In particular if

E'(P, P) ^ 0 then E'(P, FR) ¥= 0;

(b) If R is pseudo-geometric (in particular if P is excellent) and if £ is a finite set

then I(E¿) — I(E)R (see 36.4 and 18.11 of [5]). Consequently for a finite subset E,

hyperplanarity of ER is equivalent to that of E.

(c) R is an excellent local domain (see 34.B of [4]).

1.5 Extension of the ground field. Let P and F he as in 1.3. Let x be an

indeterminate over R, and let T he the set consisting of polynomials/ G P[x] whose

coefficients generate the unit ideal in R. Then T is a multiplicatively closed subset of

R[x]. By R(x) we denote the ring T~xR[x]. The facts listed below follow from (6.17)

of [5].

(i) P(x) is a regular local domain dominating P, m(R)R(x) = m(R(x)) and the

residue field of R(x) is infinite.

(ii) For every P G Spec(P), PR(x) is a prime ideal in P(x), PR(x) n R = P and

height [PP(x)] = height P.

(iii) For ideals 7,,..., 7„ in P we have

(7, n • ■ • nin)R(x) = 7,p(x) n • • • n7„p(x).

If P is excellent then 34.A of [4] implies R(x) is excellent.

Note that m(R(x))n n R = w(P)" and if P G E'(P, P) then PR(x) is in

E'(P(x)£P(x)). Also if £ is a finite subset of Spec(P) then I(E)R(x) = I(ER(x));

in particular, £ is hyperplanar iff ER{x) is hyperplanar.
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2. Triodes. By a triode we mean a triple (R, S, z) where P and S are regular local

domains and z is a nonzero element in P such that R dominates S and there exists

an epimorphism u: R -> S with ker(w) = zR and u(b) — bfor all b E S.

Note that R is residually rational over S, m(R) — zR + m(S)R, and from known

properties of regular local rings it follows that dim R = 1 + dim S. For a nonnega-

tive integer e we have m(S)e C m(R)e and u(m(R)e) = m(S)e. Obviously ordÄ b >

ordsb for all b in S. Conversely, if b E S n m(R)e, then b = u(b) E u(m(R)e) =

m(S)e. Hence ordR b = ords/b, for all b in 5. The following lemma is proved in the

10th section of [1]. We repeat it for convenience of the reader.

2.1. Assume (R, S, z) is a triode. Let f = b(0)zd + b(l)zd~x + ■■■ +b(d) where d

is a positive integer and b(0),.. .,b(d) are in S. Let v be a nonnegative integer. If

ordsb(j) <j(v + 1) for some j with 0 < / < d, then ordRf< d(v + 1).

Proof. Let e he the greatest integer with 0 < e < afsuch that ordsb(e) < e(v + 1).

Let g = b(0)ze + b(l)ze~x + ■■■ +b(e). Then ordÄ g < ords«(g) = ords2>(<?) <

e(v + 1) and hence ordR gzd~e < d + ev. Also ordR(f — gzd~e) > d + ev. There-

fore ord* /< d(l + v).

2.2. Let (R, S, z) be a triode and let Z be an indeterminate over S. Let ¡p:

S[Z] -» S[z] be the ring homomorphism defined by \p(Z) = z and ¡p(b) — b for all

b E S. Then \p is an isomorphism.

Proof. Clearly \p is an epimorphism and Ker(uO) n 5 = 0. Let/be an element of

SIZES'. Then /= b(0)Zd + b(l)Zd~x + ■■■ +b(d) with b(i) E S for 0 =s i < d,

where d is a positive integer. If b(j) ¥= 0 for some y with 1 </ < c7, we can find a

nonnegative integer v such that ords b( j) <j(p + 1). In this case, from 2.1 we

obtain ordÄ \p(f) < d(v + 1), and hence \p(f) ¥= 0. Assuming/ G Ker(i//) we must

have b(j) = 0 for 1 </ ^ c7. Now/= b(0)Zd and \¡t(f) = b(0)zd = 0. Since z is a

nonzero-divisor in R we conclude that b(0) = 0.

2.3. Let (R, S, z) be a triode. If R and S denote the completions of R and S,

respectively, then (R, S, z) is a triode and R = S[[z]].

Proof. Clearly (P, 5, z) is a triode. Let Z be indeterminate over S. Since R is

complete and z G m(R), there exists a homomorphism V: S[[Z]] -* R such that

V(Z) = z and V(b) = b for all b E S. Because m(R) = zR + m(S)R and R is

residually rational over S, V is an epimorphism. Now dim 5[[Z]] = dim S + I =

dim P and hence V must be injective.

2.4. Weierstrass Preparation Theorem. Let (R, S, z) be a triode. Assume that R

and S are complete. Let F be a principal ideal in R. If F ^ m(S)R, then there exists a

distinguished polynomial f(Z) E S[Z] (where Z is an indeterminate over S) such that

f(z)R = FR.

Proof. Follows from 2.3 and [2,(10.2)].

2.5. Let (R, S, z) be a triode such that S is an excellent local ring. Let F be a

principal ideal in S[z] and let d be a positive integer. Assume n'(P, FR, d) ¥= 0. If

P G IT(P, FR, d) then P n S[z] is in U(S[z], F, d) and height(P n S[z]) < i.
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Proof. Let Q — P n S\z\. Then Q is a nonzero prime ideal in S[z] and Q is

contained in M(R) n S[z]. Let M = m(R) il S[z] = m(S)S[z] + zS[z] and A =

S[z]M. It can be easily seen that (A, S, z) is a triode. Let P, ^4 and 5 denote the

completions of P, ^ and S, respectively. From 2.3 it follows that R — S[[z]] = Â.

Let P* be a prime ideal in R with P* (1 R = P. Clearly R dominates A, and

P* n A = <X4. Since there exist/ G 5[z] and « G R\P with P = fS[z] and m/ G P<*,

we have ufE(P*)d. Obviously u G P*. Hence P* G n(P, PP, c7). Let P = ÂP.

and C = AQA. Then P, C are regular local domains, P dominates C, and ordB/> c7.

Because S is an excellent local ring, A also is an excellent local ring. Consequently,

B/m(C)B is a regular local domain and dim B = dimC + dim[B/m(C)B]. (See

33.A of [4].)

Now it is easy to see that ordc/s*t7. In conclusion we have PC Q{d), i.e.,

Q E U(S[z], F, d). By 22.9 of [5], we have height Q = height(0Í) *£ height(PR) =

height P.

2.6. Le/ « and d be positive integers. Let R be a regular local domain of dimension «

containing an infinite field. Let F be a nonzero principal ideal in R contained in m(R)d.

Assume that F is not contained in m(R)d+x. Then there exists a triode (R, S, z) with

f(Z) E S[Z] such that R is the completion of R, f(Z) is a monk polynomial of degree

d and f(z)R = FR.

Proof. From well-known properties of completion it follows that FR E m(R)d

and FR <£m(R)d+l. According to (4.13) of [3], there exists a basis (Xx,...,Xn) of

m(R) such that FR <£(Xd+x, X2,... ,Xn)R. By Cohen's structure theorem P =

K[[Xx,...,Xn]], where K is the coefficient field of P. Let S = K{[X2,...,Xn\] and

z = Xx. Then FR (¿ m(S)R, S is complete and (R, S, z) is a triode. The rest of the

proof follows from 2.4.

3. Tables. By a table we mean a five-tuple (B, Z, A, d, f(Z)) where P is a domain,

Z is an indeterminate over P, A = B[Z], d is a positive integer, and f(Z) E A has

the form/(Z) = Zd + b(l)Zd~x + ■■■ +b(d) with b(i) G B for Ki'< d.

3.1. Let (B, Z, A, d, f(Z)) be a table. Let P E Spec(A) be such that f(Z) is in P.

Let Q = P n P. Then:

(i) height P = 1 + height Q.

(ii) QA is a prime ideal in A.

(hi) IfZ-e belongs to P for some 0 E B, then P = (Z - 6)A + QA.

Proof. Follows from the well-known properties of polynomial rings.

3.2. Let (B*, Z, A*, d, f(Z)) be a table. Letz = Z-6, where 0 E B* and let P be

a prime ideal in A* containing z. Let Q = P D P*. Assume that Bq is a regular local

domain. Then (A*P, Bq, z) is a triode.

Proof. Observe that A* = P*[z], z^4* is a prime ideal in A*, and A*P dominates

P|. From 3.1 it follows that dim A* = 1 + dim B£, m(A*P) = zA* + m(BQ')AP, and

zA*P n P| = 0. Hence A*P is a regular local domain. Let a: A*P/zA*P '-* Bq he the

canonical isomorphism, «: AP -> A*/zA* be the canonical epimorphism and u —

a ° h. Then u is an epimorphism, Ker(w) = zA*P and u(b) = b for all b E BX.    □
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To avoid repetition we fix a table (B, Z, A, d, f(Z)), without an explicit mention

of it, in the rest of this section.

3.3. Let P E U(A, f(Z)A, d), Q = P n P and a be an element of B. Assume that

Bq is a regular local domain. Let 8 be an element of Bq with aO in B. Ifa(Z — 0) E P,

then f(6)ad is in B n Q(d\

Proof. If a E Q we have nothing to prove. Assume a E Q. Let T= B\Q,

A* = T~XA, B* = BQ= T'xB. Then (Z - 6) E PA* and (P*, Z, A*, d, f(Z)) is a

table. Obviously AP = A*P. where P* = PA*. From 3.1 it follows that (AP, BQ, z) is

a triode where z = Z — 0. As an element of AP, f(Z) has the form zd + Cxzd~x

+ ■ ■ • + Cd, where C, G Bq for 1 < i < d and Cd = f(0). Now the assertion follows

from 2.1.

3.4. Assume IJ(A, f(Z)A, d) ¥= 0. Let P E Il(A, f(Z)A, d) and Q = P D P.

Then:

(i) there exists 17 G B\Q, \p E B (r¡, \p depending on P) such that r\Z + \p E P;

(ii)rad(QA+f(Z)A) = P.

Proof. Note that Q E Spec(P), QA E Spec(A) and f(Z) E QA. Let «: A ->

A/QA be the canonical epimorphism, P = h(A), S = h(B), Z- h(Z), f(Z) =

h(f(Z)) and J=h(P). Then (S, Z, R, d, f(Z)) is a table, 0 ^/(Z) G P and

P_Ell(R,f(Z)R,d). Let P=S\{0}, P0 = TXRD R,k= T'XS E R^ and P0 =

PR0. Then (k, Z, R0, d, f(Z)) is a table, k is a field and P0_E U(RQ, f(Z)R0, d).

(i) Clearly 0 ¥= P0 is a principal prime ideal in P0 = /v[Z]. Let g(Z) be the monic

generator of P. Then f(Z) — cg(Z)d for some c E R0. It follows that c = 1 and

g(Z) = Z + 0 for some_(9 G k. Let /J G P be such that ß0 E S. Then ßZ + ßO =

ß(Z + f?) G P0 n P = P. Let t), 4/ G P be such that h(r¡) = /? and «(t//) = ß0. Now

«(tjZ + xP) = ßZ + ß0 E P = h(P), hence tjZ + ^ G P. Also «(tj) = P. G P im-

plies that t/ G ß.

(ii) Let / = «(0^ + f(Z)A). Then / = /(Z)P C P. It is easy to see that if P' is

any minimal prime of J then height P' = 1 and P' n 5 = 0. (See 3.1.) Consequently,

if P, =_P'R0, then P, ¥= R0. Now we have f(Z)R0 C P,, i.e., (_Z + 0)dRo E P, and

hence Z + 0 G P,. It follows that P0 = (Z + f?)P0 C P, and P = P0 n P C P, n P

= P'. In conclusion we have P = rad(/). The rest of the proof is straightforward.

3.5. Let Px, P2 E U(A, f(Z)A, d), Qx = P, n P and Q2 = P2 D B. If Qx C Q2
then P, C P2.

Proof. Follows from 3.4(ii).

3.6 Definition. For an ideal J in A we define A(/) = {a E B | aZ + ß E J for

some/i G P}.

Note that A(/) is an ideal in B, A(J) = B iff there exists r G B with Z + t E J.

3.7. Let P E U(A, f(Z)A, d) and Q = P n P. P«<?« A(P) (¿ g. Furthermore, if

t; G P\ß, \\iEBare such that r\Z + \p E P, i«e« we «crue A(P) = [(t/P + ßP) : \pB].

Proof. A(P) !¿ ß follows from 3.4.
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Let 7) G B\Q, p G P be such that r¡Z + p G P. For a G [(tjP + ßP) : pB],

a\p = ßr\ + q where /3eß and q E Q E P. Since tjZ + ^ G P, ¿7 G P; it follows

that a(T/Z + p) — q = ar\Z + ßi\ = T|(aZ + ß) E P. But t) G P and hence

aZ + ß E P. Consequently [(tjP + ßP) : pB] E A(P). Conversely, if a E A(P)

then for some ß E B, both aZ + /? and a(7jZ + i//) are in P. Hence a(7jZ + p) —

r\(aZ + ß) = a\p - r\ß is in P. Now ap --qß E B implies ap - r)ß E P n B = Q.

It follows that a G [(tjP + ßP) : t//P], from which A(P) = [(tjP + QB) : pB] fol-

lows.

3.8. For 1 < i < « /eí P, G II(/1, /(Z)/l, <7) 6ejmc« í/iaí P, (¿ 7^/or i ^7, 1 < i < tj,

1 </ < «. Leí J = P, n • • • DPn, I = J n P W P = ß, U • • • U ß„, vv«ere ß, = P,

n B for 1 =£/<«. P«e« A(7) ¿ P. Furthermore, if t] E B\T, p E B are such that

■qZ + p~EJ, then we have A(/) = [(r/P + 7P) : pB].

Proof. The case « = 1 is the statement of 3.7.

Assume « > 2. From 3.7 it follows that there exist elements 77, G P\ß,, -p, G B

for 1 < /' < n such that tj,Z + t//,. G P(. for 1 < / < w. From 3.5 we deduce that

ß, ç£ Qj for i ¥=j, 1 < / < «, 1 </ *í n; combining this with the fact that ß, G

Spec(P) for 1 < i < n, we have [ D^ßJ = 7V(/) S¿ ß, for 1 <J « «.

Let a(/) G N(j)\Qj for 1 </ =£ «. Consider the element a = 2a(/)(«yZ + t//,).

Clearly a G 7. Let a = 2fl(/)^ and /? = 2a(j)Pr Then a G P\P, xp E B and

ff = ffZ + /3Ë7. Hence A(/) <£ T.

Let 7) G B\T, \p E B be such that t/Z + \p E J and let a E A(/). Now there exists

ß E B such that aZ + ß EJ. Consequently a(t)Z + \p) — r¡(aZ + ß) E J, i.e., a\p

- -qß E J. Since ap - tj/3 G P we have ap - t)ß E I, i.e., a E [(r¡B + IB) : pB].

Conversely for a E [(r\B + IB) : pB] we have a\p = -qß + a for some ß E B, a E I.

Because I E J ■we have a(r\Z + \p) — a = r\(aZ + ß) E J. Now r\ G T implies

Tj G P, for 1 < / < «. Hence aZ + ß E J, i.e., a E &(J).

3.9. Assume that B is a regular domain and YL2(A, f(Z)A, d) ¥= 0. For 1 < i < n

let P, G n2(v4, f(Z)A, d) and let J = P, fl • • • ni*. Then A(/) = P.

Proof. Assume, if possible, that A(/) ¥= B. Let P G Spec(P) be a minimal prime

of A(J). Let 7 = y n B and ß, = P, n P for 1 =£ , =£ «. Then 7 = ß, n • • • nß„,

height ß, = 1 for 1 < i < « (see 3.1) and, hence, height 7=1.

Clearly we have 7 C P t T, where T = ß, U • • ■ Uß„. Let P = PP. It follows

that P is a regular local domain of dimension > 2, A(J)R is primary for «i(P) and

since P is a UFD, 7P is a nonzero principal ideal in P. Since P <£T, and P £ P(2)

we can choose an x in P such that x G P U P(2). Then x is a regular parameter of R

and hence R/xR is a regular local domain of dimension > 1. Let e be the least

positive integer such that xe E A(J)R. Choose t E B\P so that txe E A(J)B. Let

y = txe and let ß be an element of B with yZ + ß in /. Let /(Z) = Zd + c^"1

+ • ■ • +cd, where c, G P for 1 < i\< d. From 3.3 we have ßd + cxyßd~x

+ ■■■ +cdyd in Q\d) for 1 < i < n. Clearly P/ + c,;^-1 + • • ■ +cdyd belongs to

ß^'P for 1 < / < n. Since ß,P is a principal ideal we have Qjd)R = (QtR)d for
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d — ¡n  v\d r\ . . . r\tn   D\d1 < i « n. Furthermore Id = (QxR)d n • • ■ D(QnR)d. Let g G P be such that gP =

7P. Then for some X E R we have

(•) ßd+cxyßd-x + ---+cdyd = Xgd.

Let h: R -> R/xR he the canonical epimorphism. As a consequence of (*) we get

h(ß)"=h(\) ■h(g)".

Earlier we observed that R/xR is a regular local domain, in particular, it is a normal

domain. Hence h(ß) E h(gR) = h(IR) and in turn ß is in xR + IR. It follows that

for some v E B and for some u E B\P, uß — vx is in 7P. Recall that (yZ + ß) E J.

Thus, we have (uyZ + vx) in J, i.e.,

(**) \(rxe)Z + vx] EJ    with x G PandT = ut E B\P.

Now from our choice of e and from (**) we deduce that

[(T.xe~x)Z +v] EJ   whereTGP\P.

Consequently tx^1 G A(/), i.e., xe"' G A( J)R. Minimality of e implies e — 1 =0.

Hence A(J)R = R, but this is a contradiction.

4. Main Theorem.

Let R be an excellent regular local domain containing a field. Let F be a nonzero

principal ideal in R, contained in m(R). Then the 2-codimensional equimultiple locus of

(R, F) is hyperplanar.

Proof. If E'(P, F) =¿ 0 then E(P, P) is hyperplanar. Hence assume E'(P, £)

= 0. In view of 1.2-1.5, we will restrict ourselves to a complete regular local

domain R which contains an infinite field.

From 2.6 we deduce the existence of a triode (P, 5, z) and a monic polynomial

f(Z) E S[Z] (where Z is an indeterminate over S) of degree d such that f(z)R — FR

and c7 = ordR P. Note that S is a complete regular local domain and therefore S,

S[z] and S[Z] are all excellent domains.

From 1.2, 2.2 and 3.9 it follows that there exists ; G 5 with (z + t) G P for all

P G n2(5[z], f(z)S[z], d). The rest of the proof is a simple consequence of 2.5.

Corollary. 7« the above set-up, if dim P = 3 then E(P, £) is hyperplanar.
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