A GLOSS ON A THEOREM OF FURSTENBERG

LESTER E. DUBINS

Abstract. Certain refinements are offered for Furstenberg's ergodic-theoretic version of Szemeredi's theorem.

Furstenberg [1977] has proven a significant generalization of a theorem of Poincaré, which, with no real loss, can be formulated thus: If \(k \) is a positive integer and \(B_1, B_2, \ldots \) is a stationary sequence of events of positive probability in a countably additive probability space, then there is a \(k \)-progression, \(K \), such that \(\bigcap_{k \in K} B_k \) has positive probability. (A \(k \)-progression is a set of \(k \) integers of the form \(\{a, a + b, a + 2b, \ldots, a + (k - 1)b\} \) with \(a > 0, b > 0 \).

The present paper observes that neither the hypothesis of countable additivity nor of stationarity is needed. Moreover, the probability of \(B_K \) can be bounded from below by a \(\delta > 0 \) which depends only on \(k \) and \(p = P(B_1) \). These facts are immediate corollaries to:

Theorem 1. Let \(p > 0 \) and let \(k \) be a positive integer. Then there is a \(\delta > 0 \) and a positive integer \(n \) such that, for every \(n \)-tuple of events \(B_1, \ldots, B_n \) of average probability at least \(p \), there is a \(k \)-progression \(K \subset \{1, \ldots, n\} \) for which \(\bigcap_{i \in K} B_i \) has probability at least \(\delta \).

This form of Furstenberg's theorem follows by an argument which he chose not to provide in [1977]. Indeed, it is a simple consequence of Szemeredi's theorem [1975] on the existence of arbitrarily long arithmetic sequences in each set of integers of positive density. But it is convenient first to provide a trivial lemma.

Lemma 1. Let \(B_1, \ldots, B_n \) be events of average probability at least \(p \) and let \(l \) be a positive integer less than \(n \). Then there is a subset \(X \) of \(\{1, \ldots, n\} \) of cardinality \(l \) such that

\[
P\left(\bigcap_{i \in X} B_i \right) \geq \left(p - \frac{l}{n} \right) \binom{n}{l}.
\]

Proof of Lemma 1. Let \(Y \) be the number of \(B \) that occur. Since \(Y \) is at most \(n \) on the event \(Y \geq l \) and is at most \(l - 1 \) on its complement, the following inequality (sharp) is easily obtained.

\[
P(Y \geq l) \geq \left(\frac{PY}{n} - \frac{l - 1}{n} \right) \left(1 - \frac{l - 1}{n} \right)^{-1}.
\]
(In (2), the precision (expectation) of \(Y \) is designated by \(PY \) as accords with a notational innovation of de Finetti.)

For the purposes of this note, this weaker inequality suffices:

\[
P(Y > t) \geq \frac{PY}{n} - \frac{l}{n}.
\]

Plainly, the event \(Y > t \) is the union of the events \(\cap B_i (i \in X) \) as \(X \) ranges over \([n]^l\), the subsets of \(\{1, \ldots, n\} \) of cardinality \(l \). Therefore,

\[
P(Y > t) \leq \sum P(\cap B_i (i \in X)) \leq \left(\frac{n}{l} \right) \max P(\cap B_i (i \in X)),
\]

as \(X \) ranges over \([n]^l\). So, for some \(X \in [n]^l \),

\[
P(\cap B_i (i \in X)) \geq P(Y > t) / \left(\frac{n}{l} \right) \geq \left(\frac{PY}{n} - \frac{l}{n} \right) / \left(\frac{n}{l} \right)
\]

\[
\geq \left(p - \frac{l}{n} \right) / \left(\frac{n}{l} \right),
\]

where the second inequality obtains in view of (3), and the third by hypothesis. \(\square \)

Let \(\gamma_k(n) \) be the least integer \(l \) such that, if \(X \) is a subset of \(\{1, \ldots, n\} \) of cardinality \(l \), then \(X \) includes a \(k \)-progression. Szemeredi [1975] has shown that \(\gamma_k(n)/n \) converges to 0 as \(n \to \infty \).

PROOF OF THEOREM 1. By Szemeredi’s theorem, there is an \(n = n(\gamma_2(n)) \) such that \(\gamma_2(n) < np/2 \). For \(l = \gamma_k(n) \), let \(\delta = p/2(\gamma_2(n)) \). That \((\delta, n) \) satisfies Theorem 1 can be verified, thus. Let \(B_1, \ldots, B_n \) be events of average possibility at least \(p \). By Lemma 1, there is an \(X \subset \{1, \ldots, n\} \) of cardinality \(l \) such that (1) holds. Since \(l/n < p/2 \), the right-hand side of (1) is at least \(\delta \). So \(\cap B_i (i \in X) \) has probability no less than \(\delta \).

Since \(X \) is of cardinality \(\gamma_k(n) \), \(X \) includes a \(k \)-progression, \(K \). Plainly, \(\cap B_i (i \in K) \) includes \(\cap B_i (i \in X) \). So it, too, has probability no less than \(\delta \). \(\square \)

REFERENCES
