The asymptotic norming property and martingale convergence
HTML articles powered by AMS MathViewer
- by D. van Dulst
- Proc. Amer. Math. Soc. 89 (1983), 430-432
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715860-4
- PDF | Request permission
Abstract:
A martingale proof is given of the result of R. G. James and A. Ho in [3] that the asymptotic norming property implies the Radon-Nikodym property.References
- S. D. Chatterji, Martingale convergence and the Radon-Nikodym theorem in Banach spaces, Math. Scand. 22 (1968), 21–41. MR 246341, DOI 10.7146/math.scand.a-10868
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- Robert C. James and Aggie Ho, The asymptotic-norming and Radon-Nikodým properties for Banach spaces, Ark. Mat. 19 (1981), no. 1, 53–70. MR 625537, DOI 10.1007/BF02384469
- Philip W. McCartney and Richard C. O’Brien, A separable Banach space with the Radon-Nikodým property that is not isomorphic to a subspace of a separable dual, Proc. Amer. Math. Soc. 78 (1980), no. 1, 40–42. MR 548080, DOI 10.1090/S0002-9939-1980-0548080-4
- J. Neveu, Discrete-parameter martingales, Revised edition, North-Holland Mathematical Library, Vol. 10, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. Translated from the French by T. P. Speed. MR 0402915
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 430-432
- MSC: Primary 46B22; Secondary 60B11, 60G42
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715860-4
- MathSciNet review: 715860