THE ASYMPTOTIC NORMING PROPERTY
AND MARTINGALE CONVERGENCE

D. VAN DULST

Abstract. A martingale proof is given of the result of R. G. James and A. Ho in [3] that the asymptotic norming property implies the Radon-Nikodym property.

In [3] R. C. James and A. Ho introduced and studied the asymptotic norming property (ANP). Their main result is that a Banach space with the ANP has the RNP (= Radon-Nikodym property). This is of considerable interest because there exist separable spaces having the ANP (and therefore the RNP) which cannot be isomorphically embedded in separable duals [3, 4]. The proof of the theorem, however, is rather complicated. By using martingale theory we give a much shorter proof that directly extends Chatterji's methods [1].

Various formally different definitions of the ANP are given in [3]. There is no need here to state them and to show their equivalence. In fact our proof works for the formally weakest one, which we recall below. Let X be a Banach space. We denote the unit ball \(\{ x : \|x\| \leq 1 \} \) by \(B(X) \) and the unit sphere \(\{ x : \|x\| = 1 \} \) by \(S(X) \). Our other terminology is standard. For notions unexplained we refer to [2]. A norming set for \(Y \) is a subset \(\Phi \) of \(B(X^*) \) such that \(\|x\| = \sup \{ \langle x, x^* \rangle : x^* \in \Phi \} \) for every \(x \in X \). A sequence \((x_n) \subset S(X) \) is said to be asymptotically normed by \(\Phi \) if for each \(\varepsilon > 0 \) there exist \(x^* \in \Phi \) and \(N \in \mathbb{N} \) such that \(\langle x_n, x^* \rangle > 1 - \varepsilon \) whenever \(n \geq N \).

Definition. \(X \) has the asymptotic norming property (ANP) if after some equivalent renorming there exists a subset \(\Phi \subset B(X^*) \) with the following properties:

(i) \(\Phi \) is a norming set for \(X \);

(ii) for every sequence \((x_n) \subset S(X) \) which is asymptotically normed by \(\Phi \) the set \(\bigcap_{n=1}^{\infty} K_n \) is nonempty, where \(K_n = \text{co} \{ x_i : i \geq n \} \) \((n = 1, 2, \ldots)\).

We now recall a basic result of Chatterji [1]. A Banach space \(X \) has the RNP iff every \(X \)-valued uniformly bounded martingale defined on \([0,1]\) with Lebesgue measure \(\lambda \) converges almost surely (a.s.) in norm. The following lemma formulates a criterion for a.s. convergence of uniformly bounded martingales in dual spaces and will be useful later. We sketch a proof for completeness, although essentially this lemma is contained in [1].

Lemma 1. Let \(X \) be a Banach space and let \((f_n, \Sigma_n, n \in \mathbb{N}) \) be a uniformly bounded \(X^* \)-valued martingale on \([0,1]\). Then the following holds.

Received by the editors November 23, 1982.
1980 Mathematics Subject Classification. Primary 46B22.

©1983 American Mathematical Society
0002-9939/83 $1.00 + $.25 per page
(i) There exists a uniformly bounded w*-measurable function \(f : [0, 1] \to X^* \) with the property that for every \(x \in X \) there is a \(\lambda \)-null set \(N_x \) such that \(\lim_{n \to \infty} \langle x, f_n(\omega) \rangle = \langle x, f(\omega) \rangle \) whenever \(\omega \notin N_x \).

(ii) \((f_n) \) converges a.s. in norm iff there exists a \(\lambda \)-essentially separably valued \(f \) satisfying (i). In this case \(f \) is the a.s. limit of \((f_n) \).

Proof. For every \(\omega \in [0, 1] \) let \(f(\omega) \) be a w*-limit point of \((f_n(\omega)) \). Since for each \(x \in X \) the scalar-valued martingale \((\langle x, f_n \rangle, \Sigma_n, n \in \mathbb{N}) \) converges a.s., and since, obviously, \(\langle x, f \rangle \) is the only possible limit, (i) follows. For the proof of (ii) suppose there exists a \(\lambda \)-essentially separably valued \(f \) as in (i). Let \(W \) denote a separable subspace of \(X^* \) that \(\lambda \)-essentially contains the ranges of \(f \) and those of all \(f_n \), and let \((x_n) \subset B(X) \) be a norming sequence for \(W \). Since the functions \(\langle x_n, f \rangle \) are all measurable it follows by a standard argument (cf. \[2, Corollary II, 1.4\]) that \(f \) is measurable and therefore Bochner integrable. To show that \((f_n) \) converges a.s. it suffices to prove that \(f_n = \delta(\Sigma_n) (n = 1, 2, \ldots) \) \[2, Corollary V, 2.2 and Theorem V, 2.8\]. Let \(n \in \mathbb{N}, A \in \Sigma_n \) and \(x \in X \) be arbitrary. Then we have

\[
\left\langle x, \int_A f_n \, d\lambda \right\rangle = \int_A \left\langle x, f_n \right\rangle \, d\lambda = \lim_{m \to \infty} \int_A \left\langle x, f_m \right\rangle \, d\lambda = \int_A \left\langle x, f \right\rangle \, d\lambda = \left\langle x, \int_A f \, d\lambda \right\rangle.
\]

It follows that \(\int_A f_n \, d\lambda = \int_A f \, d\lambda \), which means \(\delta(f | \Sigma_n) = f_n \). Clearly \(f \) is the a.s. limit of \((f_n) \). The “only if” part of (ii) is obvious.

Remark. The well-known fact that separable duals and reflexive spaces have the RNP is an immediate consequence of Lemma 1 and Chatterji’s result.

The second tool we need is a lemma of Neveu \[5, Lemma V, 2.9\].

Lemma 2. For each \(m \in \mathbb{N} \) let \((f_n^{(m)}, \Sigma_n, n \in \mathbb{N}) \) be a real-valued submartingale on some probability space and assume the sequence \((\sup_{m \in \mathbb{N}} f_n^{(m)+})_{n=1}^{\infty} \) is \(L^1 \)-bounded. Then

(i) each of the submartingales \((f_n^{(m)})_{n=1}^{\infty} \) converges a.s. to an integrable limit \(f^{(m)} \) (\(m = 1, 2, \ldots \)), and

(ii) \(\sup_{m \in \mathbb{N}} f_n^{(m)} \to \sup_{m \in \mathbb{N}} f^{(m)} \) a.s. as \(n \to \infty \).

We are now ready for the main result \[3, Theorem 1.8\].

Theorem. A Banach space \(X \) with the ANP has the RNP.

Proof. Since the RNP is separably determined and invariant for isomorphisms and since the ANP is clearly inherited by subspaces, we may assume that \(X \) is separable and that the given norm on \(X \) admits a set \(\Phi \subset B(X^*) \) as in the Definition. We may further assume \(\Phi \) is countable. (\(\Phi \) contains a countable norming subset \(\Phi' \) since \(X \) is separable and every sequence in \(S(X) \) asymptotically normed by \(\Phi' \) is also asymptotically normed by \(\Phi \).) As in \[3\] we now introduce on the linear subspace spanned by \(\Phi \) a new norm, namely the gauge of \(\text{co}(\Phi \cup -\Phi) \). If \(Y \) denotes the completion of \(\text{sp} \Phi \) for this new norm, then it is easy to see that \(X \) is isometric to a subspace of \(Y^* \) and \(X \), with its given norm, satisfies (i) and (ii) in the
Definition with Φ equal to $B(Y)$. (Observe that a sequence in $S(X)$ asymptotically normed by $B(Y)$ has a subsequence asymptotically normed either by Φ or by $-\Phi$.) Notice also that Y is separable.

Now let $(f_n, \Sigma_n, n \in \mathbb{N})$ be a uniformly bounded X-valued martingale defined on $[0, 1]$. What must be shown is that (f_n) converges a.s. in norm. We regard (f_n) as a Y^*-valued martingale and apply both lemmas. Let f be as in Lemma 1(i), and let (y_m) be a dense sequence in $B(Y)$. Lemma 2 applied with $f_n^{(m)} = \langle y_m, f_n \rangle (n, m \in \mathbb{N})$ yields that

$$\sup_{m \in \mathbb{N}} \langle y_m, f_n \rangle = ||f_n|| \to \sup \langle y_m, f \rangle = ||f|| \quad \text{a.s.}$$

Let N be a λ-null set such that

(1) $\langle y, f_n(\omega) \rangle \to \langle y, f(\omega) \rangle$.

and

(2) $||f_n(\omega)|| \to ||f(\omega)||$

hold for all $\omega \notin N$ and all $y \in \{y_1, y_2, \ldots\}$. Now fix $\omega \notin N$ and assume $||f(\omega)|| = 1$ (the case $f(\omega) = 0$ is trivial). For any $\epsilon > 0$ choose y_m so that $\langle y_m, f(\omega) \rangle > 1 - \epsilon$. Then also $\langle y_m, f_n(\omega) \rangle > 1 - \epsilon$ for sufficiently large $n \in \mathbb{N}$. It follows now that the sequence $(f_n(\omega)/||f_n(\omega)||) \subset S(X)$ is asymptotically normed by $B(Y)$. Therefore

$$K := \bigcap_{n=1}^{\infty} K_n \neq \varnothing, \text{ where } K_n = \text{co} \left\{ \frac{f_i(\omega)}{||f_i(\omega)||} : i \geq n \right\}.$$

It is now clear from (1) and (2) that $K = \{f(\omega)\}$. Since $K \subset X$ and X is separable, we have now shown that f is λ-essentially separably valued, and this concludes the proof by Lemma 1(ii).

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF AMSTERDAM, 1018 WB AMSTERDAM, THE NETHERLANDS