On defining equations for the Jacobian locus in genus five
HTML articles powered by AMS MathViewer
- by Robert D. M. Accola
- Proc. Amer. Math. Soc. 89 (1983), 445-448
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715863-X
- PDF | Request permission
Abstract:
In the space of principally polarized abelian varieties of dimension 5, eight special theta relations can be chosen to define eight hypersurfaces whose intersection contains the Jacobian locus as a component.References
- Robert D. M. Accola, Some loci in Teichmüller space for genus six defined by vanishing thetanulls (submitted for publication).
A. Krazer, Lehrbuch der Thetafunktionen, Teubner, Leipzig, 1903 (Chelsea reprint).
D. Mumford, Tata lectures on theta, II, Birkhäuser, Boston, Mass. (to appear).
- M. Noether, Zur Theorie der Thetafunctionen von beliebig vielen Argumenten, Math. Ann. 16 (1880), no. 2, 270–344 (German). MR 1510028, DOI 10.1007/BF01446392
- Harry E. Rauch and Hershel M. Farkas, Theta functions with applications to Riemann surfaces, Williams & Wilkins Co., Baltimore, Md., 1974. MR 0352108
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 445-448
- MSC: Primary 14H40; Secondary 14K10, 14K25, 32G20
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715863-X
- MathSciNet review: 715863