A note on countably normed nuclear spaces
HTML articles powered by AMS MathViewer
- by Lasse Holmström
- Proc. Amer. Math. Soc. 89 (1983), 453-456
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715865-3
- PDF | Request permission
Abstract:
A modification of the Kōmura-Kōmura imbedding theorem is used to show that every countably normed nuclear space is isomorphic to a subspace of a nuclear Fréchet space with basis and a continuous norm. The space with basis can be chosen to be a quotient of $(s)$.References
- Ed Dubinsky, The structure of nuclear Fréchet spaces, Lecture Notes in Mathematics, vol. 720, Springer, Berlin, 1979. MR 537039, DOI 10.1007/BFb0067197
- Ed Dubinsky and William Robinson, Quotient spaces of ($s$) with basis, Studia Math. 63 (1978), no. 3, 267–281. MR 515496, DOI 10.4064/sm-63-3-267-281
- Ed Dubinsky and Dietmar Vogt, Fréchet spaces with quotients failing the bounded approximation property, Studia Math. 81 (1985), no. 1, 71–77. MR 818172, DOI 10.4064/sm-81-1-71-77
- Lasse Holmström, Universal classes of nuclear Köthe spaces with a continuous norm, J. Functional Analysis 48 (1982), no. 1, 12–19. MR 671312, DOI 10.1016/0022-1236(82)90058-1 T. Kōmura and Y. Kōmura, Über die Einbettung der nuklearen Räume in ${(s)^A}$, Math. Ann. 162 (1966), 284-288.
- Albrecht Pietsch, Nuclear locally convex spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 66, Springer-Verlag, New York-Heidelberg, 1972. Translated from the second German edition by William H. Ruckle. MR 0350360, DOI 10.1007/978-3-642-87665-3
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 453-456
- MSC: Primary 46A12
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715865-3
- MathSciNet review: 715865