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SOME TILINGS OF THE PLANE

WHOSE SINGULAR POINTS FORM A PERFECT SET

MARILYN BREEN

Abstract. Let 5" be a tiling of the plane such that for every tile 7" of 9 there

correspond a tile 7" of 9 (not necessarily unique) and an integer k(T, 7") (depending

on T and 7"), 2< k, such that T meets 7" in k(T, V) connected components. Then

the set of singular points of 9" is a nowhere dense, perfect set.

1. Introduction. We begin with some preliminary definitions. The family 9" is a

tiling for the plane if and only if 5" is a collection of closed topological disks having

pairwise disjoint interiors for which U [T: T in 9" } = R2. Point p in R2 is a singular

point of 9 if and only if every neighborhood of p meets infinitely many tiles of 9",

and a tiling having no singular point is said to be locally finite. The reader is referred

to Grünbaum and Shepard [1] for a thorough treatment of these topics.

In [2], Valette examined tilings ?F of the plane having the property that for every

tile T of 9" there correspond a tile T of 9" (not necessarily unique) and an integer

k(T, 7") (depending on T and T), 2 < k, such that T meets T in k(T, T') connected

components. While examples reveal that such tilings exist, Valette proved that no

such tiling can be locally finite. Here we use his results to obtain the following

theorem: For tiling Shaving the property above, the set of singular points of 9"is a

perfect set. That is, the set of singular points of 9" is closed and has no isolated

points. Furthermore, the set is nowhere dense in the plane.

Throughout the paper, bdry S will be used to denote the boundary for set S.

2. The results.

Theorem 1. Let 9 be a tiling of the plane such that for every tile T of 9 there

correspond a tile T' of 9(not necessarily unique) and an integer k(T, T') (depending on

T and T'), 2 < k, such that T meets T in k(T, 7") connected components. Then the set

of singular points of 9" is a nowhere dense, perfect set.

Proof. The following terminology will be useful. If Tx and T2 are two associated

tiles in 9 (that is, tiles which satisfy our hypothesis), let {D'x2) be the family of

closures of the bounded components of complement (Tx U T2), 1 < / < k(Tx, T2) —

I, and let YX2 be the closure of the unbounded component. Refer to the collection

(D'X2) as a bounded component family (of Tx and T2).

From Valette's work, it follows that each D'x2 is a closed topological disk whose

boundary consists of two arcs, one in F, and the other in T2, with only their
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endpoints in common. Call such points junction points of set bdxy D\2. If D\2 and

D22 intersect, their intersection is a single point which is a junction point of each

boundary. No three members of the collection [D'x2, YX2) have a point in common.

Thus if D\4 and D34 are subsets of D\2, they cannot intersect at a junction point of

bdryF>¡2, since then D\4, D34 and Y34 would have a point in common. We will

digress to establish the following preliminary result.

Lemma 1. Let D be a member of any bounded component family. Then D contains

infinitely many singular points of 9".

Proof of Lemma 1. To reach a contradiction, assume D contains only finitely

many singular points of 5". Since 9" is a tiling of the plane, disk D contains bounded

component families, and we let [D\2) be a minimal bounded component family

contained in D. (That is, [D'X2) is a bounded component family in D containing the

fewest singular points.) Each D\2 contains a bounded component family which in

turn must be minimal. Adapting a proof of Valette [2, Proposition 1, V], it is not

hard to see that each D\2 must contain a singular point. Moreover, by our choice of

{D\2}, each D\2 must contain every singular point in their union, so there can be

only one such point. It follows that all the D\2 must have a unique singular point x

in common, and x is a junction point of each set bdryDj2. Moreover, by previous

comments, /'= 1,2. Now D\2 contains a minimal bounded component family

[D\4, D34), and the sets D34 must intersect in x since x is the only singular point

available in D\2. But this contradicts the observation above that two such sets

cannot intersect at a junction point of bdxy D\2. Our assumption is false, and

Lemma 1 is established.

We are ready to complete the proof of Theorem 1. We must show that the set of

singular points of 9" is perfect. Since the set of singular points of any tiling is closed,

it suffices to show that there are no isolated singular points.

Suppose on the contrary that p is an isolated singular point of 9", and let (M, p)

be a closed circular disk at p whose boundary C is free of any other singular points.

Now (M, p) intersects an infinite number of tiles in 9", and since at most a finite

number of these can intersect C, there must be an infinite subcollection contained in

(M, p). Each member of this subcollection gives rise to a bounded component

family, and if any corresponding D¡j were completely contained in (M, p), then by

the Lemma there would be an infinite number of singular points in (M, p),

impossible.

Thus each corresponding Dkj must meet C, and since C meets at most finitely

many tiles, there must be a tile T which serves as the associated tile for an infinite

number of tiles in (M, p). Thus bdry T n (M, p) contains an infinite set of pairwise

different points, one from each of this infinite collection of tiles. Hence bdry T n

(M, p) contains a singular point. This point must be p.

Now note that bdry T D (M, p) has an infinite number of components. The same

is true of bdry T n (N, p) where (N, p) E (M, p). This means bdry T cannot be

locally connected at p, which is impossible. Our supposition is false, and 9" cannot

have an isolated singular point.
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Finally, it is not hard to show that the set of singular points of any tiling is

nowhere dense in R2. This finishes the proof of Theorem 1.

We remark that the number 2 in Valette's result and the number 2 in Theorem 1

above are best by [2, Figure 5]. However, if the components mentioned in the

hypothesis are required to be arcs, then one of these bounds may be lowered, and

minor modifications in Valette's proof yield the following analogue.

Corollary to Valette's Proposition 1. If 9 is a tiling of the plane such that

every tile meets some other tile in a finite number of components, at least 2 of which are

arcs, then 9" is not locally finite.

It is interesting to observe that such analogues of Lemma 1 and Theorem 1 fail, as

Example 1 illustrates.

Example 1. Let Cx(r) and C2(r) be the closed half-circles of radius r centered at

the origin and lying in the upper and lower half-planes, respectively. Let L be the

x-axis, and let 51 = U (Cx(n) U C2(n) U Cx(l/n): n 3=1} U L. Define tiling 9" to be

the collection of closures of components of R2 ~ S. Then every tile of 9" meets

another tile of 9 in 2 arcs, yet 9 has only one singular point, the origin.

We close with an interesting open problem suggested by the referee: Characterize

the perfect sets which occur as the set of singular points of tilings of the type

considered here.

The author would like to thank the referee for greatly simplifying the proofs of

Lemma 1 and Theorem 1.
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