Persistently finite, persistently arithmetic theories
HTML articles powered by AMS MathViewer
- by C. J. Ash and T. S. Millar
- Proc. Amer. Math. Soc. 89 (1983), 487-492
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715872-0
- PDF | Request permission
Abstract:
The main result shows that a certain class of theories, the persistently finite, persistently arithmetic theories, have only arithmetic countable models.References
- Miroslav Benda, Remarks on countable models, Fund. Math. 81 (1973/74), no. 2, 107–119. MR 371634, DOI 10.4064/fm-81-2-107-119
- H. Jerome Keisler, Model theory for infinitary logic. Logic with countable conjunctions and finite quantifiers, Studies in Logic and the Foundations of Mathematics, Vol. 62, North-Holland Publishing Co., Amsterdam-London, 1971. MR 0344115
- Terrence Millar, Persistently finite theories with hyperarithmetic models, Trans. Amer. Math. Soc. 278 (1983), no. 1, 91–99. MR 697062, DOI 10.1090/S0002-9947-1983-0697062-8
- Terrence S. Millar, Foundations of recursive model theory, Ann. Math. Logic 13 (1978), no. 1, 45–72. MR 482430, DOI 10.1016/0003-4843(78)90030-X
- M. G. Peretjat′kin, Complete theories with a finite number of countable models, Algebra i Logika 12 (1973), 550–576, 618 (Russian). MR 0354347
- Joseph G. Rosenstein, A note on a theorem of Vaught, J. Symbolic Logic 36 (1971), 439–440. MR 290950, DOI 10.2307/2269951
- R. L. Vaught, Denumerable models of complete theories, Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), Pergamon, Oxford; Państwowe Wydawnictwo Naukowe, Warsaw, 1961, pp. 303–321. MR 0186552
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 487-492
- MSC: Primary 03C57; Secondary 03C15, 03C50
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715872-0
- MathSciNet review: 715872