On partitions of plane sets into simple closed curves. II
HTML articles powered by AMS MathViewer
- by Paul Bankston
- Proc. Amer. Math. Soc. 89 (1983), 498-502
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715874-4
- PDF | Request permission
Addendum: Proc. Amer. Math. Soc. 91 (1984), 658.
Abstract:
We answer some questions raised in [1]. In particular, we prove: (i) Let $F$ be a compact subset of the euclidean plane ${E^2}$ such that no component of $F$ separates ${E^2}$. Then ${E^2}\backslash F$ can be partitioned into simple closed curves iff $F$ is nonempty and connected. (ii) Let $F \subseteq {E^2}$ be any subset which is not dense in ${E^2}$, and let $\mathcal {S}$ be a partition of ${E^2}\backslash F$ into simple closed curves. Then $\mathcal {S}$ has the cardinality of the continuum. We also discuss an application of (i) above to the existence of flows in the plane.References
- Paul Bankston, On partitions of plane sets into simple closed curves, Proc. Amer. Math. Soc. 88 (1983), no. 4, 691–697. MR 702301, DOI 10.1090/S0002-9939-1983-0702301-6
- Paul Bankston and Richard J. McGovern, Topological partitions, General Topology Appl. 10 (1979), no. 3, 215–229. MR 546095, DOI 10.1016/0016-660x(79)90034-5
- Anatole Beck, Continuous flows in the plane, Die Grundlehren der mathematischen Wissenschaften, Band 201, Springer-Verlag, New York-Heidelberg, 1974. With the assistance of Jonathan Lewin and Mirit Lewin. MR 0500869 H. Cook, handwritten notes.
- S. H. Hechler, Independence results concerning the number of nowhere dense sets necessary to cover the real line, Acta Math. Acad. Sci. Hungar. 24 (1973), 27–32. MR 313056, DOI 10.1007/BF01894607
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751 S. Mazurkiewicz, Remarque sur un théorème de M. Mullikin, Fund. Math. 6 (1924), 37-38.
- M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press, New York, 1961. Second edition, reprinted. MR 0132534
- Leo Zippin, The Moore-Kline problem, Trans. Amer. Math. Soc. 34 (1932), no. 3, 705–721. MR 1501658, DOI 10.1090/S0002-9947-1932-1501658-8
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 498-502
- MSC: Primary 54B15; Secondary 57N05
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715874-4
- MathSciNet review: 715874