Extending families of disjoint zero sets
HTML articles powered by AMS MathViewer
- by C. E. Aull
- Proc. Amer. Math. Soc. 89 (1983), 510-514
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715876-8
- PDF | Request permission
Abstract:
The $z$-cellularity $z(X)$ of a space $X$ is defined as \[ z(X) = \sup \left \{ {\left | Z \right |:Z \subset Z(X)} \right \}\] where $Z(X)$ is the family of zero sets of $X$. It is proved using CH that a Tychonoff space $S$ is $T{C^ * }$-embedded in every Tychonoff space it is $C$-embedded in iff $z(S) \leqslant c$. A space $S$ is defined to be $T{C^ * }$-embedded in a space $X$ if any disjoint family of zero sets of $S$ can be extended to a family of disjoint zero sets of $X$. Similar theorems are proved for ${C^ * }$-embedding when $S$ is a $P$-space or the zero sets have the Isiwata property.References
- C. E. Aull, Extendability and expandability (submitted for publication).
- Robert L. Blair, Spaces in which special sets are $z$-embedded, Canadian J. Math. 28 (1976), no. 4, 673–690. MR 420542, DOI 10.4153/CJM-1976-068-9
- Robert L. Blair and Anthony W. Hager, Extensions of zero-sets and of real-valued functions, Math. Z. 136 (1974), 41–52. MR 385793, DOI 10.1007/BF01189255
- R. Engelking, Cartesian products and dyadic spaces, Fund. Math. 57 (1965), 287–304. MR 196692, DOI 10.4064/fm-57-3-287-304 —, General topology, PWN, Warsaw, 1977.
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- Takesi Isiwata, Mappings and spaces, Pacific J. Math. 20 (1967), 455–480; correction, ibid. 23 (1967), 630–631. MR 0219044, DOI 10.2140/pjm.1967.23.630
- I. Juhász, Cardinal functions in topology, Mathematical Centre Tracts, No. 34, Mathematisch Centrum, Amsterdam, 1971. In collaboration with A. Verbeek and N. S. Kroonenberg. MR 0340021
- R. Pol, Short proofs of two theorems on cardinality of topological spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 1245–1249 (English, with Russian summary). MR 383333
- Michael L. Wage, Extremally disconnected $S$-spaces, Topology Proceedings, Vol. I (Conf., Auburn Univ., Auburn, Ala., 1976) Math. Dept., Auburn Univ., Auburn, Ala., 1977, pp. 181–185. MR 0458392
- R. Grant Woods, A survey of absolutes of topological spaces, Topological structures, II (Proc. Sympos. Topology and Geom., Amsterdam, 1978) Math. Centre Tracts, vol. 116, Math. Centrum, Amsterdam, 1979, pp. 323–362. MR 565852
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 510-514
- MSC: Primary 54C50; Secondary 54C45, 54D60, 54G05, 54G10
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715876-8
- MathSciNet review: 715876