Embedding cosmic spaces in Lusin spaces
HTML articles powered by AMS MathViewer
- by Amer Bešlagić
- Proc. Amer. Math. Soc. 89 (1983), 515-518
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715877-X
- PDF | Request permission
Abstract:
We show that every regular cosmic space can be embedded in a Lusin space. This answers a question posed by J. P. R. Christensen.References
- Jean Calbrix, Une propriété des espaces topologiques réguliers, images continues d’espaces métrisables séparables, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 2, 81–82 (French, with English summary). MR 676368
- J. P. R. Christensen, Topology and Borel structure, North-Holland Mathematics Studies, Vol. 10, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. Descriptive topology and set theory with applications to functional analysis and measure theory. MR 0348724
- Eric K. van Douwen, The integers and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR 776622
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779 W. Hurewicz, Relative perfekte Teile von Punktmengen und Mengen $(A)$, Fund. Math. 12 (1928), 78-109.
- Brenda MacGibbon, On pre-analytic spaces, Math. Ann. 213 (1975), 257–259. MR 358743, DOI 10.1007/BF01350874
- E. Michael, $\aleph _{0}$-spaces, J. Math. Mech. 15 (1966), 983–1002. MR 0206907
- Ernest A. Michael, Paracompactness and the Lindelöf property in finite and countable Cartesian products, Compositio Math. 23 (1971), 199–214. MR 287502 M. E. Rudin, Handwritten notes.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 515-518
- MSC: Primary 54H05; Secondary 54E15, 54E65
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715877-X
- MathSciNet review: 715877