CARDINALITIES OF FIRST COUNTABLE \(R \)-CLOSED SPACES

ALAN DOW AND JACK PORTER

Abstract. It is now well known that first countable compact Hausdorff spaces are either countable or have cardinality \(c \). The situation for first countable \(H \)-closed spaces is that they have cardinality less than or equal to \(c \), and it is at least consistent that they may have cardinality \(\aleph_1 < c \). We show that the situation is quite different for first countable \(R \)-closed spaces. We begin by constructing an example which has cardinality \(\aleph_1 \). Let \(\lambda_0 \) be the smallest cardinal greater than \(c \) which is not a successor. For each cardinal \(\kappa \) with \(c \leq \kappa \leq \lambda_0 \) we construct a first countable \(R \)-closed space of cardinality \(\kappa \). We also construct a first countable \(R \)-closed space of cardinality \(\lambda_0 \). This seems to indicate that there is no reasonable upper bound to the cardinalities of \(R \)-closed spaces as a function of their character.

1. Introduction. A regular space \(X \) is \(R \)-closed if \(X \) is closed in every regular space containing \(X \) as a subspace, \(X \) is minimal regular if \(X \) has no coarser regular topology, and \(X \) is strongly minimal regular (SMR) if \(X \) has a base for the closed sets consisting of \(R \)-closed subsets. It is known that if \(X \) is SMR, then \(X \) is minimal regular and if \(X \) is minimal regular, then \(X \) is \(R \)-closed. A regular filter \(\mathcal{F} \) on a space \(X \) is a filter with the property that for \(A \in \mathcal{F} \), there is an open \(U \in \mathcal{F} \) such that \(\text{cl } U \subseteq A \). We shall assume that a regular filter consists of open sets. A filter \(\mathcal{F} \) is free if \(\bigcap \{ \text{cl } A : A \in \mathcal{F} \} = \emptyset \). An equivalent characterization of \(R \)-closed spaces is that there are no free regular filters, cf. \([BPS]\).

The class of \(R \)-closed spaces does not seem to be a very well behaved class. For instance, not every regular space can be densely embedded in an \(R \)-closed space \([He]\), and the product of \(R \)-closed spaces need not be \(R \)-closed \([P]\). These results are in sharp contrast to the classes of \(H \)-closed spaces and compact Hausdorff spaces, both of which are productive \([BPS]\), and every Hausdorff (Tychonoff) space can be densely embedded in a \(H \)-closed (compact Hausdorff) space. One of the few positive results about \(R \)-closed spaces is in \([DPI]\) where we show that every regular space can be embedded as a closed subspace of an \(R \)-closed space. This paper exhibits further distinctions between the class of \(R \)-closed spaces and the classes of compact Hausdorff spaces and \(H \)-closed spaces.

In the second section we construct an example of a first countable SMR space of cardinality \(\aleph_1 \). A space is \(\aleph_0 \)-bounded if every countable set has compact closure. Hechler \([H]\) has given consistent examples of first countable separable SMR spaces of cardinality \(\aleph_1 \). However, our example requires no special set theoretic assumptions and our example is \(\aleph_0 \)-bounded. In the final section we recursively construct
first countable SMR spaces for each cardinal \(\kappa \) with \(c \leq \kappa \leq \lambda_0 \) and a first countable SMR space of cardinality \(\lambda_0^\omega \).

A construction of \(R \)-closed spaces that has been put to good use by many authors is a technique due to Jones. In [DP1] we investigate this technique in some detail, but we will need a modification of it due to Stephenson [S]. We thank the referee for his or her useful suggestions.

1.1. Suppose that \(X \) is a regular space containing pairwise disjoint closed sets \(H_1, H_2 \) and \(K \). Suppose further that we have homeomorphisms \(f_1, f_2 : H_i \rightarrow K \). Let \(E \) be the equivalence relation on \(X \times \mathbb{Z} \), where \(\mathbb{Z} \) is the integers, defined by the rule \((x, i) \sim (y, j)\) if: (i) \(x = y \) and \(i = j \); (ii) \(x = f_2(y) \) and \(i + 1 = j \); (iii) \(y = f_2(x) \) and \(j + 1 = i \); (iv) \(x = f_1(y) \) and \(j + 1 = i \); (v) \(y = f_1(x) \) and \(i + 1 = j \); (vi) \(f_1(x) = f_2(y) \) and \(i + 2 = j \); or (vii) \(f_1(y) = f_2(x) \) and \(j + 2 = i \). Choose two new points \(\{P_+, P_-\} \) and let \(DJ(X) = \{P_+, P_\} \cup (X \times \mathbb{Z})/E \) and \(J(X) = \{P_+\} \cup (X \times \mathbb{N})/E_{|X \times \mathbb{N}|} \), where \(\mathbb{N} \) is the positive integers. For each \(n \in \mathbb{N} \) let \(V_n = \{P_+\} \cup X \times \{m \in \mathbb{Z} : m \geq n\} \) and \(W_n = \{P_\} \cup X \times \{m \in \mathbb{Z} : m \leq -n\} \). We topologize \(DJ(X) \) by giving \((X \times \mathbb{Z})/E \) the quotient topology and letting \(\{V_n : n \in \mathbb{N}\} \) and \(\{W_n : n \in \mathbb{N}\} \) form neighborhood bases for \(P_+ \) and \(P_- \) respectively. With this topology \(DJ(X) \) is a regular space, and we let \(J(X) \) have the subspace topology.

Proposition 1.2. Let \(X \) be locally compact and Hausdorff, and let \(H_1, H_2, K, f_1 \) and \(f_2 \) be as in 1.1. Suppose that for some \(n \in \omega \) and any sequence \(U_0, \ldots, U_{n+1} \) with \(\text{cl} \ U_{n+1} \subseteq \text{int} \text{cl} U_i \) for each \(i \leq n \), \(\text{cl} U_{n+1} \) not compact implies that \(\text{cl} U_0 \cap K \) is not compact. Then \(DJ(X) \) is SMR and \(J(X) \) is \(R \)-closed.

Proof. Since \(X \) is locally compact, so is \(DJ(X) \setminus \{P_+, P_-\} \). By 1.2 of [DP1] and the fact that for each \(m \in \mathbb{N} \), \(V_m \) and \(W_m \) are homeomorphic to \(J(X) \), it suffices to show that \(J(X) \) is \(R \)-closed.

Suppose that \(\mathcal{F} \) is a free regular filter on \(J(X) \). Since \(\mathcal{F} \) is free, there is a \(U_0 \in \mathcal{F} \) such that \(P_+ \notin \text{cl} U_0 \). Suppose that \(k \in \mathbb{N} \) is such that \(V_k \cap \text{cl} U_0 = \emptyset \). Let \(m = k \cdot (n + 1) \) and recursively choose \(\{U_i : i \leq n\} \subseteq \mathcal{F} \) such that \(\text{cl} U_{i+1} \subseteq U_i \) for \(i = 0, 1, \ldots, m - 1 \). Since \(\mathcal{F} \) is free, for some \(i < m \), \(\text{cl} U_m \cap X \times \{i\} \) is not compact. Therefore, by assumption on \(X \), \(\text{cl} U_{m-(n+1)} \cap K \times \{i\} \) is not compact. Since \(K \times \{i\} \) is identified with \(H_2 \times \{i + 1\} \) by \(f_2 \), we have that \(\text{cl} U_{m-(n+1)} \cap X \times \{i + 1\} \) is not compact. By induction, this implies that \(\text{cl} U_{m-n} \cap X \times \{k\} \) is not compact; however, this contradicts that \(\text{cl} U_0 \cap V_k = \emptyset \).

2. The \(\mathbb{N}_1 \) example. Let us begin by establishing some notation. Let \(\Lambda = \{\lambda_\alpha : \alpha < \omega_1\} \) be an order preserving listing of the limit ordinals less than \(\omega_1 \). For each \(n \in \omega \), let \(A_n = [(\omega_1 \setminus \Lambda) \times (n + 1) \cup \Lambda] \times \{n\} \), and let \(X = \bigcup_{n \in \omega} A_n \). Recall that an ordinal is the set of its predecessors. For each \(\alpha \in \omega_1 \), let

\[
X_\alpha = \bigcup_{n \in \omega} [\lambda_\alpha \setminus \Lambda \times (n + 1) \cup \{\lambda_\beta : \beta \leq \alpha\}] \times \{n\}.
\]

We will construct, for \(\alpha \in \omega_1 \), a topology \(\tau_\alpha \) on \(X_\alpha \) which is compact Hausdorff and has a basis of compact open sets. This construction is a modification of Vaughan’s [V] construction of a first countable, countably compact, nonnormal
space and is indeed itself such a space. We have not been able to show that Vaughan’s space satisfies the hypothesis of 1.2 and suspect it does not as it contains countably many pairwise disjoint clopen copies of ω_1, whose union is dense.

To help clarify the construction we give an informal description first. Each column A_n is $\omega_1 \times (n + 1)$ with the limit ordinals identified, and will be homeomorphic to ω_1. We think of each column $A_n \setminus (\Lambda \times \{n\})$ as containing $n + 1$ columns. If we take a horizontal cross section at level $a \in \omega_1 \setminus \Lambda$ by choosing the element out of the kth column of A_n for each $n > k$ this sequence will converge to the point in the kth column of A_k. The limit levels will compactify what is below them with, in addition, $\{(\lambda, n): 1 \leq n < \omega\}$ converging to $(\lambda, 0)$.

Suppose that $\alpha \in \omega_1$ and for $\beta < \alpha$ we have constructed a Hausdorff topology τ_β on X_β such that

(a) τ_β has a countable base of compact open sets;
(b) for each $n \in \omega$, $\gamma \in \lambda_\beta \setminus \Lambda$ and $k < n$ the point (γ, k, n) is isolated;
(c) for each $k \in \omega$ and $\gamma \in \lambda_\beta \setminus \Lambda$, a neighborhood base for (γ, k, k) is $\{(\gamma, k, k)\} \cup \{(\gamma, k, m): m > n\}: k \leq n < \omega$;
(d) for each $\delta < \beta$ and $n < \omega$ the set $\{(\gamma, k, n): \gamma < \lambda_\beta, k \leq n\}$ is compact;
(e) for each $\delta < \beta$, $\{(\lambda_\beta, n): 0 < n < \omega\}$ converges to $(\lambda_\beta, 0)$; and
(f) (X_β, τ_β) is an open subspace of (X_β', τ_β') for each $\delta < \beta$.

We will define τ_α by defining neighborhood bases at each of the points of $X_\alpha \setminus \bigcup_{\beta < \alpha} X_\beta$.

Step 1. For each $\gamma \in \lambda_\alpha \setminus \bigcup_{\beta < \alpha} \lambda_\beta + 1$ and $k < n < \omega$, we put $\{(\gamma, k, n)\}$ in τ_α.

Step 2. For each $\gamma \in \lambda_\alpha \setminus \bigcup_{\beta < \alpha} \lambda_\beta + 1$ and $k < \omega$, a neighborhood base for (γ, k, k) will be $\{(\gamma, k, k)\} \cup \{(\gamma, k, m): m > n\}: k \leq n < \omega$.

Step 3. Let $\{\gamma_i: i \in \omega\} \subset \lambda_\alpha \setminus \Lambda$ be a strictly increasing sequence converging to α.

For each $0 < n < \omega$, let $B_\delta(n) = [(\gamma_0 \setminus \Lambda) \times (n + 1) \cup (\Lambda \cap \gamma_0)] \times \{n\}$ and recursively define, for $1 \leq i < \omega$,

$$B_i(n) = [(\gamma_i \setminus \Lambda) \times (n + 1) \cup (\Lambda \cap \gamma_i)] \times \{n\} \setminus B_{i-1}(n).$$

It is easily seen that for each $n \in \omega \setminus \{0\}$, $\{B_i(n): i \in \omega\}$ is locally finite in $X_\alpha \setminus ((\lambda_\alpha) \times \omega)$. In addition, by induction, assumptions (c), (d), and (f), each $B_i(n)$ is a compact set. Each point of $B_i(n)$ has a neighborhood base of compact open sets already defined. By the definition of these neighborhood bases we may choose, for each $n > 0$, a locally finite collection of compact open subsets, $\{C_i(n): i \in \omega\}$, of $X_\alpha \setminus ((\lambda_\alpha) \times \omega)$ so that $C_i(n) \cap A_n = B_i(n)$ and $C_j(n) \cap A_j = \emptyset$ for $j \leq \max\{i, n\}$, $j \neq n$. Recursively define for $1 \leq n < \omega$ a neighborhood base at (α, n) as follows: For each $j < \omega$,

$$W_j((\alpha, n)) = [\{(\alpha, n)\} \cup \{C_i(n): j < i < \omega\}] \setminus \{W_n((\alpha, m)): 0 < m < n\}.$$
Step 4. By construction $X_\alpha \backslash \{(\lambda_\alpha, 0)\}$ has a countable base of compact open sets. We let X be the one point compactification of $X_\alpha \backslash \{(\lambda_\alpha, 0)\}$. This clearly satisfies conditions (e) and (f) and the others obviously hold by construction.

We let τ be the topology on X generated by the open base $\bigcup_{\alpha < \omega_1} \tau_\alpha$. With this topology X is first countable, zero dimensional (has a base of clopen sets), locally compact, \aleph_0-bounded, nonnormal and has cardinality \aleph_1. To see that X is \aleph_0-bounded we simply note that any countable set is contained in some X_α. Nonnormality will be a trivial consequence of the following.

Let U be an open set containing a closed noncompact subset of A_n, where $n \in \omega$. We will show that $\text{cl } U \cap A_0$ is not compact. Since A_n is homeomorphic to ω_1, $A_n \backslash U$ is countable [GJ]. Therefore there is an $\alpha < \omega_1$ such that for $\gamma > \alpha$ and $\gamma \notin \lambda$, $(\gamma, n, n) \in U$. For each such γ, there is a $k \in \omega$ such that $\{(\gamma, n, j) : j > k\} \subset U$ since U is open. It follows that there are an uncountable set $\Gamma \subset \omega_1 \backslash \lambda$ and a $k \in \omega$ such that for each $\gamma \in \Gamma$, $\{(\gamma, n, j) : j > k\} \subset U$. Now, for each limit λ of Γ and $j > k$, $(\lambda, j) \in \text{cl } U$ since $(\lambda, j) \in \text{cl}\{((\gamma, n, j)) : \gamma \in \Gamma\}$. Therefore $(\lambda, 0) \in \text{cl } U$ for each limit λ of Γ. Since Γ is uncountable, $\text{cl } U \cap A_0$ is not compact.

Now since each A_n is homeomorphic to ω_1, if we let $H_1 = A_1$, $H_2 = A_2$ and $K = A_0$, we have that X satisfies the conditions of 1.2 with $n = 0$. We have shown

Theorem 2.1. $DJ(X)$ is a first countable SMR space with cardinality \aleph_1.

3. Cardinals greater than \mathfrak{c}. In this section we will construct first countable SMR spaces with cardinalities up to \aleph_0 where \aleph_0 is the first singular cardinal greater than \mathfrak{c}. Assuming GCH, $\aleph_0 = \aleph_\omega$. We will make extensive use of a space developed by Mrowka and Isbell then modified by Stephenson [S] and Hechler [H].

3.1. Suppose D is an infinite discrete set and R is a family of infinite pairwise almost disjoint countable subsets of D. (A and B are almost disjoint if $|A \cap B| < \omega$.) We will give $X = D \cup R$ the following topology. D is open and discrete while a neighborhood base for $r \in R$ is $\{r \cup r' : r' \text{ is a finite subset of } r\}$. It is easily shown that X is a first countable locally compact Hausdorff space.

Suppose that R contains disjoint subsets H, K with $H \cup K = R$ and $|H| = |K|$. Suppose further that there is an $n \in \omega$ such that for any sequence $U_0, \ldots, U_{n+1} \subset D$ with $\text{cl } U_{i+1} \subset \text{cl } U_i$ for $i < n$, $|\text{cl } U_{n+1} \cap H| \geq \aleph_0$ implies $|\text{cl } U_0 \cap K| \geq \aleph_0$. It is then clear that if we let $H_1 \cup H_2 = H$ with $|H_1| = |H_2|$ and f_i be any isomorphism from H_i to K for $i = 1, 2$, then X satisfies the conditions 1.2. Therefore $DJ(X)$ would be SMR. This will be our plan, to recursively construct X_κ, for $c \leq \kappa \leq \aleph_0$, so that $X_\kappa = D_\kappa \cup R_\kappa$ with $|R_\kappa| = \kappa$ and R_κ satisfying the above.

To begin we borrow a result by Hechler [H] whose purpose was to remove the assumption of the continuum hypothesis from an example by Stephenson [S].

3.2. Theorem. There is a maximal almost disjoint family R_c of infinite subsets of ω such that $|R_c| = c$ and there is a subset $H_c \subset R_c$ with $|H_c| = c$ such that for $U \subset \omega$, $|\{r \in H_c : U \cap r| = \aleph_0\} \geq \aleph_0$ implies $|\{r \in R_c \setminus H_c : U \cap r| = \aleph_0\} = c$.

For a space $X = D \cup R$ as in 3.1 we will say that (X, H, K) satisfies (\ast_c) if the following hold: (i) $H \subset R$ and $K = R \setminus H$; (ii) $|H| = |K| = |R|$; and (iii) for
CARDINALITIES OF FIRST COUNTABLE R-CLOSED SPACES

Let \(U_0, \ldots, U_{n+1} \subseteq D \) with \(\{U_i \} \subseteq \text{int} \{U_i \} \) for \(i \leq n \), then \(|\{U_{n+1} \cap H\}| \geq \aleph_0 \) implies \(|\{U_0 \cap K\}| \geq \aleph_0 \). Let \(D_\omega = \omega \) and let \(R_\omega \) and \(H_\omega \) be as in 3.2. Then \(X_\omega = D_\omega \cup R_\omega \) with the topology as in 3.1 satisfies \((\ast_0)\). Indeed, for \(r \in R_\omega \) and \(W \subseteq D_\omega \), \(r \in \text{cl} \{W\} \) if \(r \cap W = \emptyset \). Let \(K_\omega = R_\omega / H_\omega \).

Therefore if \(U_0, U_1 \subseteq D \) are as in (iii) with \(|U_0 \cap H_\omega| \geq \aleph_0 \) then by 3.2 \(|U_0 \cap K_\omega| = \omega \). Hence \(|U_0 \cap K_\omega| \geq \aleph_0 \).

3.3. The main construction. Let \(\kappa \) be a cardinal such that \(\kappa^\omega = \kappa \). Suppose that \(X_\kappa = D_\kappa \cup R_\kappa \) is as in 3.1 with \(|D_\kappa| < |R_\kappa| = \kappa \). Suppose also that \(n \in \omega \) and that \((X_\kappa, H_\kappa, K_\kappa) \) satisfy \((\ast_\kappa)\). We shall let \(D_{\kappa^+} = D_\kappa \times \kappa^+ \) and define an almost disjoint family, \(R_{\kappa^+} \), of countable subsets of \(D_{\kappa^+} \) and subsets \(H_{\kappa^+} \) and \(K_{\kappa^+} \) of \(R_{\kappa^+} \) so that \((X_{\kappa^+}, H_{\kappa^+}, K_{\kappa^+}) \) satisfies \((\ast_{\kappa^+})\).

An ordinal \(\delta \) is said to have countable cofinality, \(\text{cf} \delta = \omega \), if there is a sequence \(\{\gamma_n: n \in \omega\} \subseteq \delta \) such that \(\delta = \sup(\gamma_n) \). For each \(\delta < \kappa^+ \) with \(\text{cf} \delta = \omega \) we shall construct a set \(R(\delta) \) as follows. Choose any strictly increasing sequence \(\{\gamma_n: n \in \omega\} \) converging to \(\delta \). Let \(R(\delta) \) be a maximal family of almost disjoint uncountable countable subsets of \(D_\delta \times \delta \) such that for each \(r \in R(\delta) \) and \(n \in \omega \), \(|r \cap D_\delta \times \gamma_n| \leq \aleph_0 \). Note that \(|R(\delta)| \leq |D_\delta \times \delta| = \kappa^\omega = \kappa \). Fix an injection \(f_\delta \) from \(R(\delta) \) into \(H_\delta \). We define \(R_{\kappa^+} = \{r \cup (f_\delta(r) \times \{\delta\}): \delta < \kappa^+ \} \) with \(\text{cf} \delta = \omega \) and \(r \in R(\delta) \) \(\cup \{r \times \{\gamma\}: \gamma < \kappa^+ \} \). Let \(K_{\kappa^+} = D_{\kappa^+} \setminus \{r \times \{\gamma\}: \gamma < \kappa^+ \} \), \(r \in R_{\kappa^+} \), and if \(\text{cf} \gamma = \omega \), \(r \notin f_\delta(\gamma) \). Each element of \(R_{\kappa^+} \) is a countable subset of \(D_{\kappa^+} \) and \(K_{\kappa^+} \) is an almost disjoint family. Let us define \(H_{\kappa^+} = \{r \in R_{\kappa^+}: \text{there is an } r_1 \in H_\delta \text{ with } r \cup \{r_1\} \subseteq r \} \).

Suppose first that there is a \(\gamma < \kappa^+ \) such that \(\{r \subseteq U_{n+2} \cap H_\kappa: \text{there is an } r_1 \in H_\delta \text{ with } r \cup \{r_1\} \subseteq r \} \) is infinite. Therefore, since \((X_\kappa, H_\kappa, K_\kappa) \) satisfies \((\ast_\kappa)\), \(\{r \subseteq U_{n+2} \cap H_\kappa: \text{there is an } r_1 \in H_\delta \text{ with } r \cup \{r_1\} \subseteq r \} \) is uncountable. Hence \(|U_0 \cap K_{\kappa^+}| \geq \aleph_0 \). On the other hand, suppose that there is an infinite increasing sequence \(\{\gamma_j: j \in \omega\} \subseteq \kappa^+ \) such that, for each \(j \in \omega \), there are an \(r_j \in H_\kappa \) and an \(r(j) \times \{\gamma_j\} \subseteq r(j) \times \kappa^+ \). Therefore, for each \(j \in \omega \), \(U_{n+2} \cap D_\kappa \times (\gamma_j + 1) \) is infinite. So let \(\delta = \sup(\gamma_j: j \in \omega) \) and choose an infinite set \(S \subseteq R(\delta) \) such that \(s \cup \{f_\delta(s) \times \{\delta\}\} \subseteq \{r \subseteq U_{n+2} \cap H_\kappa: \text{there is an } r_1 \in H_\delta \text{ with } r \cup \{r_1\} \subseteq r \} \) for each \(s \in S \). This can be done since \(s \subseteq D_\kappa \times \gamma_j \) is finite for each \(j \in \omega \) and \(s \subseteq R(\delta) \). Therefore, \(s \cup \{f_\delta(s) \times \{\delta\}\} \subseteq \{r \subseteq U_{n+2} \cap H_\kappa: \text{there is an } r_1 \in H_\delta \text{ with } r \cup \{r_1\} \subseteq r \} \) for each \(s \in S \).

We now obtain the following results.

Theorem 3.4. For each cardinal \(\kappa \) with \(c \leq \kappa < \lambda_0 \) there is a first countable SMR space with cardinality \(\kappa \).

Proof. Observe that for a cardinal \(\kappa \) with \(\text{cf}(\kappa) > \omega \), \(\kappa^\omega = \sum(\alpha^\omega: \alpha < \kappa) \). It follows that \((c^+)^\omega = \sum(\alpha^\omega: \alpha < c^+) = c^+ \cdot c = c^+ \). Similarly, by induction, \(\kappa^\omega = \kappa \) for \(c < \kappa < \lambda_0 \). Therefore, by 3.2 and 3.3, we have a space \(X_\kappa \) of cardinality \(\kappa \) such that \((X_\kappa, H_\kappa, K_\kappa) \) satisfies \((\ast_\kappa)\) for some \(n \in \omega \). We partition \(H_\kappa \) into two sets \(H_1 \) and \(H_2 \) with \(|H_1| = |H_2| \). By 1.2, \(DJ(X_\kappa) \) is a first countable SMR space.

The following result follows easily from the results in \([P]\).
Theorem 3.5. A product of first countable SMR spaces is itself SMR.

Corollary 3.6. There are first countable, SMR spaces of cardinality λ_0 and λ^c_0, respectively.

Proof. For $n \in \omega$, let κ_n be the nth successor of c. Thus, $\lambda_0 = \Sigma\{\kappa_n : n \in \omega\}$. For each $n \in \omega$, let X_n be a first countable, SMR space of cardinality κ_n. Let Y be the topological sum of $\{X_n : n \in \omega\}$ (we write $Y = \bigcup \{X_n : n \in \omega\}$) and $X = \{P_+\} \cup Y$. Now, $U \subseteq X$ is defined to be open if $U \cap Y$ is open in Y and if $P_+ \subseteq U$, there is $m \in \omega$ such that $U \supseteq \bigcup \{X_n : n \geq m\}$. It is immediate that X is first countable and R-closed and has cardinality λ_0. Since each X_n is SMR, then X is also SMR. Finally let $Z = \prod\{X_n : n \in \omega\}$. By 3.5, Z is SMR and is clearly first countable. The cardinality of Z is $|\prod\{X_n : n \in \omega\}| = \lambda^c_0$.

References

Department of Mathematics, University of Kansas, Lawrence, Kansas 66045 (Current address of Jack Porter)

Current address (Alan Dow): Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 1A1