A characterization of uniform paracompactness
HTML articles powered by AMS MathViewer
- by J. Fried and Z. Frolík
- Proc. Amer. Math. Soc. 89 (1983), 537-540
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715882-3
- PDF | Request permission
Abstract:
Main result: a uniform space $X$ is uniformly paracompact [R] iff for some (and then any) compactification $K$ of $X$ and for any compact $C \subset K\backslash X$ closed disjoint sets $X \times C$ and the diagonal ${\Delta _X}( = \{ \left \langle {x,x} \right \rangle |x \in X\} )$ can be separated by a uniformly continuous function on the semiuniform product $X * K$.References
- Zdeněk Frolík, A note on metric-fine spaces, Proc. Amer. Math. Soc. 46 (1974), 111–119. MR 358704, DOI 10.1090/S0002-9939-1974-0358704-X
- Zdeněk Frolík, On paracompact uniform spaces, Czechoslovak Math. J. 33(108) (1983), no. 3, 476–484. MR 718930 —, On two classes of paracompact uniform spaces,ČCasopis Pěst. Mat. (to appear). A. Hohti, On uniform paracompactness, Ann. Acad. cei. Fenn. Ser. A I Math., Dissertationes No. 36, 1981.
- Aarno Hohti, On supercomplete uniform spaces, Proc. Amer. Math. Soc. 87 (1983), no. 3, 557–560. MR 684658, DOI 10.1090/S0002-9939-1983-0684658-8
- J. R. Isbell, Uniform spaces, Mathematical Surveys, No. 12, American Mathematical Society, Providence, R.I., 1964. MR 0170323
- J. R. Isbell, Supercomplete spaces, Pacific J. Math. 12 (1962), 287–290. MR 156311
- Michael D. Rice, A note on uniform paracompactness, Proc. Amer. Math. Soc. 62 (1977), no. 2, 359–362. MR 436085, DOI 10.1090/S0002-9939-1977-0436085-3
- Hisahiro Tamano, On paracompactness, Pacific J. Math. 10 (1960), 1043–1047. MR 124876
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 537-540
- MSC: Primary 54E15; Secondary 54D18
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715882-3
- MathSciNet review: 715882