A note on the stable homotopy groups of $M\textrm {Sp}(n)$
HTML articles powered by AMS MathViewer
- by Mitsunori Imaoka
- Proc. Amer. Math. Soc. 89 (1983), 541-544
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715883-5
- PDF | Request permission
Abstract:
The kernel of the epimorphism $\pi _{8n + 3}^S(MSp(n)) \to {\pi _{4n + 3}}(MSp)$ is a cyclic group of order $8m(n + 1)$ for some integer $m(n + 1)$ defined using the characteristic numbers of the symplectic cobordism classes, and this epimorphism splits for some $n$.References
- Mitsunori Imaoka, Symplectic Pontrjagin numbers and homotopy groups of $M\textrm {Sp}(n)$, Hiroshima Math. J. 12 (1982), no. 1, 151–181. MR 647236
- Stanley O. Kochman, The symplectic cobordism ring. I, Mem. Amer. Math. Soc. 24 (1980), no. 228, ix+206. MR 556609, DOI 10.1090/memo/0228
- Stanley O. Kochman and Victor P. Snaith, On the stable homotopy of symplectic classifying and Thom spaces, Algebraic topology, Waterloo, 1978 (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1978) Lecture Notes in Math., vol. 741, Springer, Berlin, 1979, pp. 394–448. MR 557179
- R. James Milgram, Unstable homotopy from the stable point of view, Lecture Notes in Mathematics, Vol. 368, Springer-Verlag, Berlin-New York, 1974. MR 0348740, DOI 10.1007/BFb0070455
- Elmer Rees and Emery Thomas, Cobordism obstructions to deforming isolated singularities, Math. Ann. 232 (1978), no. 1, 33–53. MR 500994, DOI 10.1007/BF01420621
- D. M. Segal, On the symplectic cobordism ring, Comment. Math. Helv. 45 (1970), 159–169. MR 263094, DOI 10.1007/BF02567323
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 541-544
- MSC: Primary 55N22; Secondary 55Q10, 57R20, 57R90
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715883-5
- MathSciNet review: 715883