The combinatorics of certain products
HTML articles powered by AMS MathViewer
- by Don Rawlings
- Proc. Amer. Math. Soc. 89 (1983), 560-562
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715887-2
- PDF | Request permission
Abstract:
A combinatorial interpretation for the coefficients in the expansion of $\Pi (1 + u{x^j}{y^k}){(1 - u{x^j}{y^k})^{ - 1}}$ is given.References
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- L. Carlitz, The expansion of certain products, Proc. Amer. Math. Soc. 7 (1956), 558–564. MR 85374, DOI 10.1090/S0002-9939-1956-0085374-X
- A. M. Garsia and I. Gessel, Permutation statistics and partitions, Adv. in Math. 31 (1979), no. 3, 288–305. MR 532836, DOI 10.1016/0001-8708(79)90046-X D. Foata, Aspects combinatoires du calcul des $q$-séries (Séminaire d’Informatique Théorique, 1980), Institut de Programmation, Centre National Recherche Scientifique No. 248, Paris, 1980.
- Don Rawlings, Generalized Worpitzky identities with applications to permutation enumeration, European J. Combin. 2 (1981), no. 1, 67–78. MR 611934, DOI 10.1016/S0195-6698(81)80023-6
- D. P. Roselle, Coefficients associated with the expansion of certain products, Proc. Amer. Math. Soc. 45 (1974), 144–150. MR 342406, DOI 10.1090/S0002-9939-1974-0342406-X
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 560-562
- MSC: Primary 05A15
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715887-2
- MathSciNet review: 715887