A symmetric star polyhedron that tiles but not as a fundamental domain
HTML articles powered by AMS MathViewer
- by Sándor Szabó
- Proc. Amer. Math. Soc. 89 (1983), 563-566
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715888-4
- PDF | Request permission
Abstract:
In [7] S. K. Stein constructed a 10-dimensional centrally-symmetric star body whose translates tile $10$-space but whose translates by a lattice do not tile it. In [8] he constructed a $5$-dimensional star polyhedron whose translates tile $5$-space but whose congruent copies by a group of motions do not tile it. So there is no lattice tiling by translates of this polyhedron. In the present paper we shall construct a $5$-dimensional centrally-symmetric star polyhedron whose translates tile $5$-space but whose congruent copies by a group of motions do not tile it. Furthermore, this phenomenon occurs at an infinitude of dimensions.References
- Reinhold Baer, Partitionen endlicher Gruppen, Math. Z. 75 (1960/61), 333–372 (German). MR 151507, DOI 10.1007/BF01211032
- David Hilbert, Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), no. 10, 437–479. MR 1557926, DOI 10.1090/S0002-9904-1902-00923-3
- J. Milnor, Hilbert’s problem 18: on crystallographic groups, fundamental domains, and on sphere packing, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974) Proc. Sympos. Pure Math., Vol. XXVIII, Amer. Math. Soc., Providence, R.I., 1976, pp. 491–506. MR 0430101 K. Reinhard, Zur Zerlegung der Euklidschen Räume in Kongruente Polytope, Sitzberichte Preuss. Akad. Wiss. (1928), 150-155.
- C. A. Rogers, Packing and covering, Cambridge Tracts in Mathematics and Mathematical Physics, No. 54, Cambridge University Press, New York, 1964. MR 0172183
- S. K. Stein, Factoring by subsets, Pacific J. Math. 22 (1967), 523–541. MR 219435, DOI 10.2140/pjm.1967.22.523
- Sherman K. Stein, A symmetric star body that tiles but not as a lattice, Proc. Amer. Math. Soc. 36 (1972), 543–548. MR 319058, DOI 10.1090/S0002-9939-1972-0319058-6
- S. K. Stein, Tiling space by congruent polyhedra, Bull. Amer. Math. Soc. 80 (1974), 819–820. MR 358528, DOI 10.1090/S0002-9904-1974-13524-X
- S. K. Stein, Algebraic tiling, Amer. Math. Monthly 81 (1974), 445–462. MR 340063, DOI 10.2307/2318582
- M. R. Von Wolff, A star domain with densest admissible point set not a lattice, Acta Math. 108 (1962), 53–60. MR 144859, DOI 10.1007/BF02545763
- S. K. Zaremba, Covering problems concerning Abelian groups, J. London Math. Soc. 27 (1952), 242–246. MR 47036, DOI 10.1112/jlms/s1-27.2.242
- Hans Zassenhaus, Modern developments in the geometry of numbers, Bull. Amer. Math. Soc. 67 (1961), 427–439. MR 132040, DOI 10.1090/S0002-9904-1961-10614-9
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 563-566
- MSC: Primary 05B45; Secondary 52A45
- DOI: https://doi.org/10.1090/S0002-9939-1983-0715888-4
- MathSciNet review: 715888