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COHEN-MACAULAY ALGEBRAIC MONOIDS
LEX E. RENNER

ABSTRACT. Let £ be an irreducible, normal, algebraic monoid with group of units
G = GlL(K). SI,(K) X K* or PGl,(K) X K*. Then E is a Cohen-Macaulay alge-
braic varicty.

0. Introduction. An algebraic monoid E is an algebraic variety together with an
associative morphism m: E X E — E and a two-sided unit 1 € E for m.

Several authors [6, 8] are currently studying the theory of algebraic monoids. Prior
to this, the first major geometric breakthrough [2] was published in 1972. In that
work, Hochster proved that any normal D-monoid is a Cohen-Macaulay algebraic
variety. The extent to which that result can be generalized to more general monoids
is not known; this work is an optimistic addition.

Let X be an irreducible algebraic variety. X is Cohen-Macaulay if for all x € X
there exists a regular sequence { f,..... f,,} € €, . which is a system of parameters.

THEOREM. Suppose E is an irreducible, normal, algebraic monoid with group of units
Gl,(K), PGL,(K) X K* or S1,(K) X K*. Then E is a Cohen-Macaulay algebraic
variety.

There are two main points to the proof.

(1) In [11] it is proved that any finite, normal, separable, abelian covering of a
smooth variety is Cohen-Macaulay. That result is generalized here.

(2) Given any monoid E, as in the theorem, there exists a diagram

!
E’ > Endg(K?)

gl B
E — EII
«a
such that all morphisms are finite and dominant and have D-group kernels. (1)
above is then applied to the morphism f to yield the result.

1. Notation and terminology. Let K be an algebraically closed field. An algebraic
monoid is an affine algebraic variety, defined over K, together with an associative
morphism m: E X E — E and a two-sided unit 1 € E for m. Our general reference
here is [6].
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If E is an algebraic monoid then G(E) = {x € E|x ' € E) is an affine algebraic
group and G(E) C E is an open subset in the Zariski topology. E°, the irreducible
component of 1, is the unique maximal closed, irreducible submonoid of E.

An affine variety is completely determined by its K-algebra of regular functions.
So, an affine, algebraic monoid E is completely determined by morphisms A:
K[E]— K[E]® K[E]and &: K[E] — K such that

(A®1)eA=(1®A)cA and (meogl)cA=(l,noe)ed =1,

where n: K — K[E] is the unit of the K-algebra structure of K[E]. K[E] is thus a
K-bigebra. The functor E — K[E] is an equivalence between the category of
algebraic monoids and the category of finitely generated K-bigebras.

Let Z be an irreducible, algebraic monoid. Z is a D-monoid if G(Z) is a torus.
X(Z)= Hom(Z,K) is the set of characters of Z. If E is any irreducible algebraic
monoid, a maximal D-submonoid Z C E is the closure in E of a maximal torus T of
G(E). Z is determined to within an isomorphism by the finitely generated, com-
mutative monoid X(Z).

An irreducible, algebraic monoid E is reductive if G(E) is a reductive algebraic
group.

If e=e?€ E let G(e) denote the algebraic group of units of the algebraic
monoid eEe.

I(E)= (e € Ele* =¢).

E is regular if for all x € E there exists g € G(E) and e € I(E), such that

= ge.

For a survey of many of the known results on algebraic monoids the reader should
consult [6]. A systematic treatment of some of the fundamental topics has been
initiated in [8].

2. Finite D-group actions. To establish the main results of the paper, I have been
led to consider certain morphisms f: G — H such that kernel( f) is a (not necessarily
reduced) finite D-group scheme. The purpose of this section is to generalize the
results of P. Roberts [11] that can be applied to these morphisms f above. Our
reference for the theory of D-groups is [13, 2.2]. The subtlety arises only if the
characteristic of the ground field divides the order of the group scheme.

DEFINITION. Let G be an affine group scheme over K. G is a finite D-group if:

(1) dim K [G] < oo,

(ii) X(G) = {a € K[G]|A(a) = a ® a)
is a K-linear basis for K[G], where A: K[G] = K[G] ® K[G] is the comorphism
induced from the multiplication morphism m: G X G — G.

Note. X(G) is always a group. It is the group of characters of G. K[G] is thus
isomorphic to the group algebra of X(G) over K.

2.1 LEMMA. Let X be an affine variety defined over K. Then there is a canonical
one-to-one correspondence between actions of the D-group G on X, and direct sum
decompositions K[ X]= & K[X], such that K[X], - K[X]g C K[X],4p for
all a,B € X(G).

a€ X(G)
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Proor. Let R = K[X]. Given R = & R, define u: R - R ® K[G] by letting
p(x) = x ® aif x € R. Plainly, this is the comorphism of an action G X X — X.

Conversely, given ¢: G X X — X we have ¢*: R - R ® K[G] which determines
on R the structure of a K[G]-comodule (i.e. ¢* is coassociative and (1 ® g)e ¢* = 1,
where ¢ is the augmentation on K[G]). One checks, using these two facts, that if
P*(a) = L,cx)d, ® athena =% .y a, and (a,)g = a, if « = B. and 0 other-
wise. Thus, R = @ __, ; Ra where R, = {(a € Rla=a,). Q.E.D.

The remainder of this section is devoted to the task of sharpening some known
results (see [11]) about Cohen-Macaulay rings and finite D-group actions. I have
assumed throughout that all rings are finitely generated K-algebras and that K is an
algebraically closed field.

Let X be an affine variety defined over K, and let G be a finite D-group scheme
such that ¢: G X X — X is an action of G on X. For example, if X is an algebraic
group and G is a closed finite D-subgroup scheme, then G X X — X, (g.x) — g - x.
is an action of G on X. Let 4 be the coordinate ring of X.

2.2 LEMMA. Let X, A, @ be as above and let A, = {x € A|lp*(x) = x ® 1}. Then:
(1) A, is a subalgebra of A.

(i1) The inclusion A, — A is an integral extension.

(iii) A, is an Ay-module for all « € X(G).

(iv) If A is a normal domain, so is A,,.

(V) A, is a finitely generated K-algebra.

PROOF. (i)-(iii) are straightforward. For (iv) let K and L be the quotient fields of
A, and A, respectively. Since 4 is normal it suffices to prove that A, = 4 N K. But
A N Kisan X(G)-graded subspace of A and K = L,. Thus, AN K=A4AN L, C A,.
(v) follows directly from (i1) and [1, Chapter 5, 1.9]. Q.E.D.

2.3 PROPOSITION. Suppose G X X — X is an action of the finite D-group G on the
normal affine variety X. If X/G = Spec(A,) is smooth, then X is Cohen-Macaulay.

PROOF. By assumption A4 is a normal domain and 4, — A is a regular subalgebra.
By (2.2), A is a finite A,-module, and then by [1, Chapter 7, 4.8] it is actually
reflexive. Since A splits up as & __ Xy e each summand A, is reflexive. Consider
now any nonzero A4,, and choose 0 = x in it. Suppose a has order » in X(G). Then
the map y — x"~! - y is injective and sends 4, into A,. The image is an ideal that is
reflexive and hence is divisorial [1, Chapter 7, 4.2]. But by assumption 4, is regular,
and hence all its divisorial ideals are projective [1, Chapter 7, 4.7]. Thus, each 4 is
projective and so A is projective. In particular, 4 is flat over 4. This implies that A
is Cohen-Macaulay [12, Chapter 4, D]. Q.E.D.

The following well-known result is also needed in the proof of the main theorem
(3.2).

2.4 PROPOSITION. Suppose X is an irreducible, affine, Cohen-Macaulay variety and
G X X = X is an action of the finite D-group on X. Then X/G is Cohen-Macaulay.
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PROOF. Let A = K[X]and A, = K[ X/G]. A is Cohen-Macaulay as an A-module
and thus, as an A,-module. But 4 splits up as 4, ® X, c y()\04a Thus, each
summand, in particular 4,,, is a Cohen-Macaulay 4,-module. Q.E.D.

3. The main results.

3.1 PROPOSITION. Let G be one of the groups S1,(K) X K*, Gl,(K) or PGl,(K) X
K*, and suppose E is an irreducible, normal, algebraic monoid with 0 and unit group G.
Then there exists a commutative diagram of algebraic monoids with R = End (K ?):

X - R
v l
E - Y

Furthermore,
(1) all morphisms are finite and dominant,
(1) the kernel of each morphism is a finite D-group.

The proof of 3.1 is recorded in [9]. The main point is to construct the desired
morphisms v and 4, first on the level of maximal D-submonoids, and then globally
using the “big cell” [9, §3] U C E.

3.2 THEOREM. Let E be an irreducible, normal, algebraic monoid with unit group
G = S1L,(K) X K* Gl,(K) or PGl,(K) X K*. Then E is Cohen-Macaulay.

PRrOOF. Case 1. E has a 0.
We have, from 3.1, the following commutative diagram with R = End (K ?):

X —-» R
) l
E - Y

All morphisms have finite D-group kernels and R is a smooth variety. By 2.3, X is
Cohen-Macaulay and thus, by 2.4, E is Cohen-Macaulay.

Case 2. E does not have a 0.

We may assume, since groups are smooth, that G ¢ E. By [3, Corollary 1.4], E has
an idempotent e = 1 and from [5, Corollary 2], it follows that e € T, the closure in E
of some maximal torus T of G. Let e, € T be the minimal idempotent. Then e, is
fixed by the Weyl group W, so by [7, Theorem 2.3], ¢, is in the closure of the identity
component S of ZG, the center of G. Thus, dim(e,T) > 0, since otherwise e,T =
{eq) for all tori (e, is central and all maximal tori are conjugate), contradicting the
fact that E does not have a 0. Hence I(T) = {1,ey) [4, Theorem 3.7]. Let G’ = (G,
G). As E is regular [10], the map m: G’ X § — E, m(x,y) = x - y, is onto, and since
G’ is a simple algebraic group, m is finite-to-one. Thus, E = G U G - ¢; dimG = 4,
dim(G - e) = dim(G’) = 3. But since E is normal, the singular locus has codi-
mension larger than two. Hence, by homogeneity of E\ G = G - e, E is actually
nonsingular in this case. Q.E.D.
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