COHEN-MACAULAY ALGEBRAIC MONOIDS

LEX E. RENNER

ABSTRACT. Let E be an irreducible, normal, algebraic monoid with group of units $G = \text{Gl}_2(K), \text{Sl}_2(K) \times K^* \text{ or } \text{PGL}_2(K) \times K^*$. Then E is a Cohen-Macaulay algebraic variety.

0. Introduction. An algebraic monoid E is an algebraic variety together with an associative morphism $m: E \times E \to E$ and a two-sided unit $1 \in E$ for m.

Several authors [6, 8] are currently studying the theory of algebraic monoids. Prior to this, the first major geometric breakthrough [2] was published in 1972. In that work, Hochster proved that any normal D-monoid is a Cohen-Macaulay algebraic variety. The extent to which that result can be generalized to more general monoids is not known; this work is an optimistic addition.

Let X be an irreducible algebraic variety. X is Cohen-Macaulay if for all $x \in X$ there exists a regular sequence $(f_1, \ldots, f_m) \subseteq \mathfrak{c}_{x,X}$, which is a system of parameters.

Theorem. Suppose E is an irreducible, normal, algebraic monoid with group of units $\text{Gl}_2(K), \text{PGL}_2(K) \times K^* \text{ or } \text{Sl}_2(K) \times K^*$. Then E is a Cohen-Macaulay algebraic variety.

There are two main points to the proof.

1) In [11] it is proved that any finite, normal, separable, abelian covering of a smooth variety is Cohen-Macaulay. That result is generalized here.

2) Given any monoid E, as in the theorem, there exists a diagram

\[
\begin{array}{ccc}
E' & \xrightarrow{f} & \text{End}_K(K^2) \\
\downarrow g & & \downarrow \beta \\
E & \xrightarrow{\alpha} & E''
\end{array}
\]

such that all morphisms are finite and dominant and have D-group kernels. (1) above is then applied to the morphism f to yield the result.

1. Notation and terminology. Let K be an algebraically closed field. An algebraic monoid is an affine algebraic variety, defined over K, together with an associative morphism $m: E \times E \to E$ and a two-sided unit $1 \in E$ for m. Our general reference here is [6].
If E is an algebraic monoid then $G(E) = \langle x \in E \mid x^{-1} \in E \rangle$ is an affine algebraic group and $G(E) \subseteq E$ is an open subset in the Zariski topology. E°, the irreducible component of 1, is the unique maximal closed, irreducible submonoid of E.

An affine variety is completely determined by its K-algebra of regular functions. So, an affine, algebraic monoid E is completely determined by morphisms $\Delta: K[E] \to K[E] \otimes K[E]$ and $\varepsilon: K[E] \to K$ such that

\[
(\Delta \otimes 1) \circ \Delta = (1 \otimes \Delta) \circ \Delta \quad \text{and} \quad (\eta \circ \varepsilon, 1) \circ \Delta = (1, \eta \circ \varepsilon) \circ \Delta = 1,
\]

where $\eta: K \to K[E]$ is the unit of the K-algebra structure of $K[E]$. $K[E]$ is thus a K-bigebra. The functor $E \to K[E]$ is an equivalence between the category of algebraic monoids and the category of finitely generated K-bigebra.

Let Z be an irreducible, algebraic monoid. Z is a D-monoid if $G(Z)$ is a torus. $X(Z) = \text{Hom}(Z, K)$ is the set of characters of Z. If E is any irreducible algebraic monoid, a maximal D-submonoid $Z \subseteq E$ is the closure in E of a maximal torus T of $G(E)$. Z is determined to within an isomorphism by the finitely generated, commutative monoid $X(Z)$.

An irreducible, algebraic monoid E is reductive if $G(E)$ is a reductive algebraic group.

If $e = e^2 \in E$ let $G(e)$ denote the algebraic group of units of the algebraic monoid eEe.

$I(E) = \langle e \in E \mid e^2 = e \rangle$.

E is regular if for all $x \in E$ there exists $g \in G(E)$ and $e \in I(E)$, such that $x = ge$.

For a survey of many of the known results on algebraic monoids the reader should consult [6]. A systematic treatment of some of the fundamental topics has been initiated in [8].

2. Finite D-group actions. To establish the main results of the paper, I have been led to consider certain morphisms $f: G \to H$ such that kernel(f) is a (not necessarily reduced) finite D-group scheme. The purpose of this section is to generalize the results of P. Roberts [11] that can be applied to these morphisms f above. Our reference for the theory of D-groups is [13, 2.2]. The subtlety arises only if the characteristic of the ground field divides the order of the group scheme.

Definition. Let G be an affine group scheme over K. G is a finite D-group if:

(i) $\dim_K K[G] < \infty$,

(ii) $X(G) = \{a \in K[G] \mid \Delta(a) = a \otimes a \}$

is a K-linear basis for $K[G]$, where $\Delta: K[G] \to K[G] \otimes K[G]$ is the comorphism induced from the multiplication morphism $m: G \times G \to G$.

Note. $X(G)$ is always a group. It is the group of characters of G. $K[G]$ is thus isomorphic to the group algebra of $X(G)$ over K.

2.1 **Lemma.** Let X be an affine variety defined over K. Then there is a canonical one-to-one correspondence between actions of the D-group G on X, and direct sum decompositions $K[X] = \bigoplus_{\alpha \in X(G)} K[X]_\alpha$ such that $K[X]_\alpha \cdot K[X]_\beta \subseteq K[X]_{\alpha + \beta}$ for all $\alpha, \beta \in X(G)$.
Proof. Let \(R = K[\mathcal{X}] \). Given \(R = \bigoplus R_\alpha \), define \(\mu : R \to R \otimes K[\mathcal{G}] \) by letting \(\mu(x) = x \otimes \alpha \) if \(x \in R_\alpha \). Plainly, this is the comorphism of an action \(G \times X \to X \).

Conversely, given \(\varphi : G \times X \to X \) we have \(\varphi^* : R \to R \otimes K[\mathcal{G}] \) which determines on \(R \) the structure of a \(K[\mathcal{G}] \)-comodule (i.e. \(\varphi^* \) is coassociative and \((1 \otimes \varepsilon) \circ \varphi^* = 1 \), where \(\varepsilon \) is the augmentation on \(K[\mathcal{G}] \)). One checks, using these two facts, that if \(\varphi^*(a) = \sum_{\alpha \in X(\mathcal{G})} a_\alpha \otimes \alpha \) then \(a = \sum_{\alpha \in X(\mathcal{G})} a_\alpha \) and \((a_\alpha)_\beta = a_\alpha \) if \(\alpha = \beta \), and 0 otherwise. Thus, \(R = \bigoplus_{\alpha \in X(\mathcal{G})} R_\alpha \) where \(R_\alpha = \langle \alpha \in R | a = a_\alpha \rangle \). Q.E.D.

The remainder of this section is devoted to the task of sharpening some known results (see [11]) about Cohen-Macaulay rings and finite \(D \)-group actions. I have assumed throughout that all rings are finitely generated \(K \)-algebras and that \(K \) is an algebraically closed field.

Let \(X \) be an affine variety defined over \(K \), and let \(G \) be a finite \(D \)-group scheme such that \(\varphi : G \times X \to X \) is an action of \(G \) on \(X \). For example, if \(X \) is an algebraic group and \(G \) is a closed finite \(D \)-subgroup scheme, then \(G \times X \to X \), \((g,x) \mapsto g \cdot x \), is an action of \(G \) on \(X \). Let \(A \) be the coordinate ring of \(X \).

2.2 Lemma. Let \(X, A, \varphi \) be as above and let \(A_0 = \langle x \in A | \varphi^*(x) = x \otimes 1 \rangle \). Then:

(i) \(A_0 \) is a subalgebra of \(A \).

(ii) The inclusion \(A_0 \to A \) is an integral extension.

(iii) \(A_\alpha \) is an \(A_0 \)-module for all \(\alpha \in X(\mathcal{G}) \).

(iv) If \(A \) is a normal domain, so is \(A_0 \).

(v) \(A_0 \) is a finitely generated \(K \)-algebra.

Proof. (i)–(iii) are straightforward. For (iv) let \(K \) and \(L \) be the quotient fields of \(A_0 \) and \(A \), respectively. Since \(A \) is normal it suffices to prove that \(A_0 = A \cap K \). But \(A \cap K \) is an \(X(\mathcal{G}) \)-graded subspace of \(A \) and \(K = L_0 \). Thus, \(A \cap K = A \cap L_0 \subseteq A_0 \).

(v) follows directly from (ii) and [1, Chapter 5, 1.9]. Q.E.D.

2.3 Proposition. Suppose \(G \times X \to X \) is an action of the finite \(D \)-group \(G \) on the normal affine variety \(X \). If \(X/G = \text{Spec}(A_0) \) is smooth, then \(X \) is Cohen-Macaulay.

Proof. By assumption \(A \) is a normal domain and \(A_0 \to A \) is a regular subalgebra. By (2.2), \(A \) is a finite \(A_0 \)-module, and then by [1, Chapter 7, 4.8] it is actually reflexive. Since \(A \) splits up as \(\bigoplus_{\alpha \in X(\mathcal{G})} A_\alpha \), each summand \(A_\alpha \) is reflexive. Consider now any nonzero \(A_\alpha \), and choose \(0 \neq x \) in it. Suppose \(\alpha \) has order \(n \) in \(X(\mathcal{G}) \). Then the map \(y \mapsto x^{n-1} \cdot y \) is injective and sends \(A_\alpha \) into \(A_0 \). The image is an ideal that is reflexive and hence is divisorial [1, Chapter 7, 4.2]. But by assumption \(A_0 \) is regular, and hence all its divisorial ideals are projective [1, Chapter 7, 4.7]. Thus, each \(A_\alpha \) is projective and so \(A \) is projective. In particular, \(A \) is flat over \(A_0 \). This implies that \(A \) is Cohen-Macaulay [12, Chapter 4, D]. Q.E.D.

The following well-known result is also needed in the proof of the main theorem (3.2).

2.4 Proposition. Suppose \(X \) is an irreducible, affine, Cohen-Macaulay variety and \(G \times X \to X \) is an action of the finite \(D \)-group on \(X \). Then \(X/G \) is Cohen-Macaulay.
Proof. Let $A = K[X]$ and $A_0 = K[X/G]$. A is Cohen-Macaulay as an A-module and thus, as an A_0-module. But A splits up as $A_0 \oplus \sum_{\alpha \in X(G) \setminus \{0\}} A_\alpha$. Thus, each summand, in particular A_0, is a Cohen-Macaulay A_0-module. Q.E.D.

3. The main results.

3.1 Proposition. Let G be one of the groups $\text{SL}_2(K) \times K^*$, $\text{GL}_2(K)$ or $\text{PGL}_2(K) \times K^*$, and suppose E is an irreducible, normal, algebraic monoid with 0 and unit group G. Then there exists a commutative diagram of algebraic monoids with $R = \text{End}_K(K^2)$:

$$
\begin{array}{ccc}
X & \xrightarrow{h} & R \\
\downarrow & & \downarrow \\
E & \rightarrow & Y
\end{array}
$$

Furthermore,

(i) all morphisms are finite and dominant,

(ii) the kernel of each morphism is a finite D-group.

The proof of 3.1 is recorded in [9]. The main point is to construct the desired morphisms ν and h, first on the level of maximal D-submonoids, and then globally using the “big cell” [9, §3] $U \subseteq E$.

3.2 Theorem. Let E be an irreducible, normal, algebraic monoid with unit group $G = \text{SL}_2(K) \times K^*$, $\text{GL}_2(K)$ or $\text{PGL}_2(K) \times K^*$. Then E is Cohen-Macaulay.

Proof. Case 1. E has a 0.

We have, from 3.1, the following commutative diagram with $R = \text{End}_K(K^2)$:

$$
\begin{array}{ccc}
X & \rightarrow & R \\
\downarrow & & \downarrow \\
E & \rightarrow & Y
\end{array}
$$

All morphisms have finite D-group kernels and R is a smooth variety. By 2.3, X is Cohen-Macaulay and thus, by 2.4, E is Cohen-Macaulay.

Case 2. E does not have a 0.

We may assume, since groups are smooth, that $G \subseteq E$. By [3, Corollary 1.4], E has an idempotent $e \neq 1$ and from [5, Corollary 2], it follows that $e \in \overline{T}$, the closure in E of some maximal torus T of G. Let $e_0 \in \overline{T}$ be the minimal idempotent. Then e_0 is fixed by the Weyl group W, so by [7, Theorem 2.3], e_0 is in the closure of the identity component S of ZG, the center of G. Thus, $\dim(e_0T) > 0$, since otherwise $e_0T = \langle e_0 \rangle$ for all tori (e_0 is central and all maximal tori are conjugate), contradicting the fact that E does not have a 0. Hence $I(\overline{T}) = \langle 1, e_0 \rangle$ [4, Theorem 3.7]. Let $G' = (G, G)$. As E is regular [10], the map $m: G' \times \overline{S} \rightarrow E$, $m(x, y) = x \cdot y$, is onto, and since G' is a simple algebraic group, m is finite-to-one. Thus, $E = G \cup G \cdot e$; $\dim G = 4$, $\dim(G \cdot e) = \dim(G') = 3$. But since E is normal, the singular locus has codimension larger than two. Hence, by homogeneity of $E \setminus G = G \cdot e$, E is actually nonsingular in this case. Q.E.D.
References

9. ——. Classification of semisimple rank one monoids (to appear).
10. ——. Reductive monoids are von Neumann regular (to appear).

Department of Mathematics, York University, Downsview, Ontario, Canada M3J 1P3