COHEN-MACAULAY ALGEBRAIC MONOIDS

LEX E. RENNER

ABSTRACT. Let *E* be an irreducible, normal, algebraic monoid with group of units $G = Gl_2(K)$, $Sl_2(K) \times K^*$ or $PGl_2(K) \times K^*$. Then *E* is a Cohen-Macaulay algebraic variety.

0. Introduction. An algebraic monoid E is an algebraic variety together with an associative morphism $m: E \times E \rightarrow E$ and a two-sided unit $1 \in E$ for m.

Several authors [6, 8] are currently studying the theory of algebraic monoids. Prior to this, the first major geometric breakthrough [2] was published in 1972. In that work, Hochster proved that any normal *D*-monoid is a Cohen-Macaulay algebraic variety. The extent to which that result can be generalized to more general monoids is not known; this work is an optimistic addition.

Let X be an irreducible algebraic variety. X is Cohen-Macaulay if for all $x \in X$ there exists a regular sequence $\{f_1, \ldots, f_m\} \subseteq \mathfrak{C}_{x,X}$, which is a system of parameters.

THEOREM. Suppose E is an irreducible, normal, algebraic monoid with group of units $Gl_2(K)$, $PGl_2(K) \times K^*$ or $Sl_2(K) \times K^*$. Then E is a Cohen-Macaulay algebraic variety.

There are two main points to the proof.

(1) In [11] it is proved that any finite, normal, separable, abelian covering of a smooth variety is Cohen-Macaulay. That result is generalized here.

(2) Given any monoid E, as in the theorem, there exists a diagram

E'	\rightarrow	$\operatorname{End}_{K}(K^{2})$
g↓		$\downarrow \beta$
Ε	\rightarrow	<i>E''</i>
	α	

such that all morphisms are finite and dominant and have D-group kernels. (1) above is then applied to the morphism f to yield the result.

1. Notation and terminology. Let K be an algebraically closed field. An *algebraic* monoid is an affine algebraic variety, defined over K, together with an associative morphism $m: E \times E \to E$ and a two-sided unit $1 \in E$ for m. Our general reference here is [6].

C 1983 American Mathematical Society 0002-9939/83 \$1.00 + \$.25 per page

Received by the editors July 12, 1982 and, in revised form, April 7, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 20M99; Secondary 14M05.

Key words and phrases. Algebraic monoid, Cohen-Macaulay, D-group.

If E is an algebraic monoid then $G(E) = \{x \in E | x^{-1} \in E\}$ is an affine algebraic group and $G(E) \subseteq E$ is an open subset in the Zariski topology. E° , the irreducible component of 1, is the unique maximal closed, irreducible submonoid of E.

An affine variety is completely determined by its K-algebra of regular functions. So, an affine, algebraic monoid E is completely determined by morphisms Δ : $K[E] \rightarrow K[E] \otimes K[E]$ and ε : $K[E] \rightarrow K$ such that

$$(\Delta \otimes 1) \circ \Delta = (1 \otimes \Delta) \circ \Delta$$
 and $(\eta \circ \varepsilon, 1) \circ \Delta = (1, \eta \circ \varepsilon) \circ \Delta = 1$,

where $\eta: K \to K[E]$ is the unit of the K-algebra structure of K[E]. K[E] is thus a K-bigebra. The functor $E \to K[E]$ is an equivalence between the category of algebraic monoids and the category of finitely generated K-bigebras.

Let Z be an irreducible, algebraic monoid. Z is a *D*-monoid if G(Z) is a torus. X(Z) = Hom(Z, K) is the set of *characters* of Z. If E is any irreducible algebraic monoid, a maximal *D*-submonoid $Z \subseteq E$ is the closure in E of a maximal torus T of G(E). Z is determined to within an isomorphism by the finitely generated, commutative monoid X(Z).

An irreducible, algebraic monoid E is *reductive* if G(E) is a reductive algebraic group.

If $e = e^2 \in E$ let G(e) denote the algebraic group of units of the algebraic monoid e E e.

 $I(E) = \langle e \in E | e^2 = e \rangle.$

E is regular if for all $x \in E$ there exists $g \in G(E)$ and $e \in I(E)$, such that x = ge.

For a survey of many of the known results on algebraic monoids the reader should consult [6]. A systematic treatment of some of the fundamental topics has been initiated in [8].

2. Finite *D*-group actions. To establish the main results of the paper, I have been led to consider certain morphisms $f: G \to H$ such that kernel(f) is a (not necessarily reduced) finite *D*-group scheme. The purpose of this section is to generalize the results of P. Roberts [11] that can be applied to these morphisms f above. Our reference for the theory of *D*-groups is [13, 2.2]. The subtlety arises only if the characteristic of the ground field divides the order of the group scheme.

DEFINITION. Let G be an affine group scheme over K. G is a *finite D-group* if:

(i) $\dim_K K[G] < \infty$,

(ii) $X(G) = \{a \in K[G] | \Delta(a) = a \otimes a\}$

is a K-linear basis for K[G], where $\Delta: K[G] \to K[G] \otimes K[G]$ is the comorphism induced from the multiplication morphism $m: G \times G \to G$.

Note. X(G) is always a group. It is the group of characters of G. K[G] is thus isomorphic to the group algebra of X(G) over K.

2.1 LEMMA. Let X be an affine variety defined over K. Then there is a canonical one-to-one correspondence between actions of the D-group G on X, and direct sum decompositions $K[X] = \bigoplus_{\alpha \in X(G)} K[X]_{\alpha}$ such that $K[X]_{\alpha} \cdot K[X]_{\beta} \subseteq K[X]_{\alpha+\beta}$ for all $\alpha, \beta \in X(G)$.

PROOF. Let R = K[X]. Given $R = \bigoplus R_{\alpha}$, define $\mu: R \to R \otimes K[G]$ by letting $\mu(x) = x \otimes \alpha$ if $x \in R_{\alpha}$. Plainly, this is the comorphism of an action $G \times X \to X$.

Conversely, given $\varphi: G \times X \to X$ we have $\varphi^*: R \to R \otimes K[G]$ which determines on R the structure of a K[G]-comodule (i.e. φ^* is coassociative and $(1 \otimes \varepsilon) \circ \varphi^* = 1$, where ε is the augmentation on K[G]). One checks, using these two facts, that if $\varphi^*(a) = \sum_{\alpha \in X(G)} a_\alpha \otimes \alpha$ then $a = \sum_{\alpha \in X(G)} a_\alpha$ and $(a_\alpha)_\beta = a_\alpha$ if $\alpha = \beta$, and 0 otherwise. Thus, $R = \bigoplus_{\alpha \in X(G)} R_\alpha$ where $R_\alpha = \{a \in R | a = a_\alpha\}$. Q.E.D.

The remainder of this section is devoted to the task of sharpening some known results (see [11]) about Cohen-Macaulay rings and finite D-group actions. I have assumed throughout that all rings are finitely generated K-algebras and that K is an algebraically closed field.

Let X be an affine variety defined over K, and let G be a finite D-group scheme such that $\varphi: G \times X \to X$ is an action of G on X. For example, if X is an algebraic group and G is a closed finite D-subgroup scheme, then $G \times X \to X$, $(g, x) \to g \cdot x$, is an action of G on X. Let A be the coordinate ring of X.

- 2.2 LEMMA. Let X, A, φ be as above and let $A_0 = \{x \in A | \varphi^*(x) = x \otimes 1\}$. Then:
- (i) A_0 is a subalgebra of A.
- (ii) The inclusion $A_0 \rightarrow A$ is an integral extension.
- (iii) A_{α} is an A_0 -module for all $\alpha \in X(G)$.
- (iv) If A is a normal domain, so is A_0 .
- (v) A_0 is a finitely generated K-algebra.

PROOF. (i)-(iii) are straightforward. For (iv) let K and L be the quotient fields of A_0 and A, respectively. Since A is normal it suffices to prove that $A_0 = A \cap K$. But $A \cap K$ is an X(G)-graded subspace of A and $K = L_0$. Thus, $A \cap K = A \cap L_0 \subseteq A_0$. (v) follows directly from (ii) and [1, Chapter 5, 1.9]. Q.E.D.

2.3 PROPOSITION. Suppose $G \times X \to X$ is an action of the finite D-group G on the normal affine variety X. If $X/G = \text{Spec}(A_0)$ is smooth, then X is Cohen-Macaulay.

PROOF. By assumption A is a normal domain and $A_0 \rightarrow A$ is a regular subalgebra. By (2.2), A is a finite A_0 -module, and then by [1, Chapter 7, 4.8] it is actually reflexive. Since A splits up as $\bigoplus_{\alpha \in X(G)} A_{\alpha}$, each summand A_{α} is reflexive. Consider now any nonzero A_{α} , and choose $0 \neq x$ in it. Suppose α has order n in X(G). Then the map $y \rightarrow x^{n-1} \cdot y$ is injective and sends A_{α} into A_0 . The image is an ideal that is reflexive and hence is divisorial [1, Chapter 7, 4.2]. But by assumption A_0 is regular, and hence all its divisorial ideals are projective [1, Chapter 7, 4.7]. Thus, each A_{α} is projective and so A is projective. In particular, A is flat over A_0 . This implies that A is Cohen-Macaulay [12, Chapter 4, D]. Q.E.D.

The following well-known result is also needed in the proof of the main theorem (3.2).

2.4 PROPOSITION. Suppose X is an irreducible, affine, Cohen-Macaulay variety and $G \times X \rightarrow X$ is an action of the finite D-group on X. Then X/G is Cohen-Macaulay.

PROOF. Let A = K[X] and $A_0 = K[X/G]$. A is Cohen-Macaulay as an A-module and thus, as an A_0 -module. But A splits up as $A_0 \oplus \sum_{\alpha \in X(G) \setminus \{0\}} A_{\alpha}$. Thus, each summand, in particular A_0 , is a Cohen-Macaulay A_0 -module. Q.E.D.

3. The main results.

3.1 PROPOSITION. Let G be one of the groups $Sl_2(K) \times K^*$, $Gl_2(K)$ or $PGl_2(K) \times K^*$, and suppose E is an irreducible, normal, algebraic monoid with 0 and unit group G. Then there exists a commutative diagram of algebraic monoids with $R = End_K(K^2)$:

$$\begin{array}{cccc} X & \stackrel{h}{\rightarrow} & R \\ v \downarrow & & \downarrow \\ E & \rightarrow & Y \end{array}$$

Furthermore,

(i) all morphisms are finite and dominant,

(ii) the kernel of each morphism is a finite D-group.

The proof of 3.1 is recorded in [9]. The main point is to construct the desired morphisms v and h, first on the level of maximal *D*-submonoids, and then globally using the "big cell" [9, §3] $U \subseteq E$.

3.2 THEOREM. Let E be an irreducible, normal, algebraic monoid with unit group $G = Sl_2(K) \times K^*$, $Gl_2(K)$ or $PGl_2(K) \times K^*$. Then E is Cohen-Macaulay.

PROOF. Case 1. E has a 0.

We have, from 3.1, the following commutative diagram with $R = \text{End}_{\kappa}(K^2)$:

$$\begin{array}{cccc} X & \rightarrow & R \\ \downarrow & & \downarrow \\ E & \rightarrow & Y \end{array}$$

All morphisms have finite D-group kernels and R is a smooth variety. By 2.3, X is Cohen-Macaulay and thus, by 2.4, E is Cohen-Macaulay.

Case 2. E does not have a 0.

We may assume, since groups are smooth, that $G \subsetneq E$. By [3, Corollary 1.4], *E* has an idempotent $e \neq 1$ and from [5, Corollary 2], it follows that $e \in \overline{T}$, the closure in *E* of some maximal torus *T* of *G*. Let $e_0 \in \overline{T}$ be the minimal idempotent. Then e_0 is fixed by the Weyl group *W*, so by [7, Theorem 2.3], e_0 is in the closure of the identity component *S* of *ZG*, the center of *G*. Thus, dim $(e_0T) > 0$, since otherwise $e_0T =$ $\langle e_0 \rangle$ for all tori (e_0 is central and all maximal tori are conjugate), contradicting the fact that *E* does not have a 0. Hence $I(\overline{T}) = \langle 1, e_0 \rangle$ [4, Theorem 3.7]. Let G' = (G,*G*). As *E* is regular [10], the map *m*: $G' \times \overline{S} \to E$, $m(x,y) = x \cdot y$, is onto, and since G' is a simple algebraic group, *m* is finite-to-one. Thus, $E = G \cup G \cdot e$; dim G = 4, dim $(G \cdot e) = \dim(G') = 3$. But since *E* is normal, the singular locus has codimension larger than two. Hence, by homogeneity of $E \setminus G = G \cdot e$, *E* is actually nonsingular in this case. Q.E.D.

L. E. RENNER

References

1. N. Bourbaki, Commutative algebra, Hermann, Paris, 1972.

2. M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318-337.

3. M. Putcha, On linear algebraic semigroups, Trans. Amer. Math. Soc. 259 (1980), 457-469.

4. _____, On linear algebraic semigroups. II, Trans. Amer. Math. Soc. 259 (1980), 471-491.

5. _____, Green's relation on a connected algebraic monoid, Linear and Multilinear Algebra 12 (1982), 205-214.

6. _____, Linear algebraic semigroups, Semigroup Forum 22 (1981), 287-309.

7. _____, A semigroup approach to linear algebraic groups, J. Algebra 80 (1983), 164-185.

8. L. Renner, Algebraic monoids, Thesis, University of British Columbia, Vancouver, 1982.

9. ____, Classification of semisimple rank one monoids (to appear).

10. _____, Reductive monoids are von Neumann regular (to appear).

11. P. Roberts, Abelian extensions of regular local rings, Proc. Amer. Math. Soc. 78 (1980), 307-310.

12. J. Serre, Algebre locale, Lecture Notes in Math., vol. 11, Springer-Verlag, Berlin, 1966.

13. W. Waterhouse, Introduction to affine group schemes, Graduate Texts in Math., vol. 66, Springer-Verlag, Berlin, 1979.

DEPARTMENT OF MATHEMATICS, YORK UNIVERSITY, DOWNSVIEW, ONTARIO, CANADA M3J 1P3