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COHEN-MACAULAY ALGEBRAIC MONOIDS

LEX E. RENNER

ABSTRACT. Let /; be an irreducible, normal, algebraic monoid with group of units

G = Gl2( AT), Sl2(K) X K* or PG12(K ) X K*. Then E is a Cohen-Macaulay alge-

braic variety.

0. Introduction. An algebraic monoid E is an algebraic variety together with an

associative morphism m: E X E -» E and a two-sided unit 1 e E for m.

Several authors [6, 8] are currently studying the theory of algebraic monoids. Prior

to this, the first major geometric breakthrough [2] was published in 1972. In that

work, Höchster proved that any normal Z)-monoid is a Cohen-Macaulay algebraic

variety. The extent to which that result can be generalized to more general monoids

is not known; this work is an optimistic addition.

Let X be an irreducible algebraic variety. X is Cohen-Macaulay if for all x e X

there exists a regular sequence (/,,_/„,} ç £v v, which is a system of parameters.

Theorem. Suppose E is an irreducible, normal, algebraic monoid with group of units

Gl2(K), PGl2(/0 X K* or S\2(K)X K*. Then E is a Cohen-Macaulay algebraic

variety.

There are two main points to the proof.

(1) In [11] it is proved that any finite, normal, separable, abelian covering of a

smooth variety is Cohen-Macaulay. That result is generalized here.

(2) Given any monoid E, as in the theorem, there exists a diagram

E'      ->      End^(AT2)

<?1 Iß
E       -> E"

a

such that all morphisms are finite and dominant and have Z)-group kernels. (1)

above is then applied to the morphism / to yield the result.

1. Notation and terminology. Let K be an algebraically closed field. An algebraic

monoid is an affine algebraic variety, defined over K, together with an associative

morphism m: E X E —> E and a two-sided unit 1 e £ for m. Our general reference

here is [6].
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If E is an algebraic monoid then G(E) = (x g £|x~ ' g E) is an affine algebraic

group and G(E) ç £ is an open subset in the Zariski topology. £°, the irreducible

component of 1, is the unique maximal closed, irreducible submonoid of £.

An affine variety is completely determined by its /¿-algebra of regular functions.

So, an affine, algebraic monoid £ is completely determined by morphisms A:

K[E]-* K[E]® K[E] ande: K[E) -> K such that

(A ® 1)° A = (1 ® A)° A    and    (tj ° e, 1)° A = (l,ij ° e)° A = 1,

where tj: K -> /( [£] is the unit of the /¿-algebra structure of K[E]. K[E] is thus a

K-bigebra. The functor £ -> /¿[£] is an equivalence between the category of

algebraic monoids and the category of finitely generated /¿-bigebras.

Let Z be an irreducible, algebraic monoid. Z is a D-monoid if G(Z) is a torus.

X(Z) = Hom(Z,.r\ ) is the set of characters of Z. If £ is any irreducible algebraic

monoid, a maximal D-submonoid Z ç £ is the closure in £ of a maximal torus T of

G(E). Z is determined to within an isomorphism by the finitely generated, com-

mutative monoid X(Z).

An irreducible, algebraic monoid £ is reductive if G(E) is a reductive algebraic

group.

If e = e2 G £ let G(e) denote the algebraic group of units of the algebraic

monoid eEe.

1(E) = {e G £|e2 = e).

E is regular if for all x g £ there exists g G G(E) and e e 1(E), such that

x = ge.

For a survey of many of the known results on algebraic monoids the reader should

consult [6]. A systematic treatment of some of the fundamental topics has been

initiated in [8].

2. Finite D-group actions. To establish the main results of the paper, I have been

led to consider certain morphisms/: G -* H such that kernel(/) is a (not necessarily

reduced) finite Z)-group scheme. The purpose of this section is to generalize the

results of P. Roberts [11] that can be applied to these morphisms / above. Our

reference for the theory of D-groups is [13, 2.2]. The subtlety arises only if the

characteristic of the ground field divides the order of the group scheme.

Definition. Let G be an affine group scheme over K. G is a finite D-group if:

(i) dimKK[G] < oo,

(ii) X(G) = {a g K[G]\b(a) = a ® a)

is a /¿-linear basis for K[G], where A: K[G] -* K[G] ® K[G] is the comorphism

induced from the multiplication morphism m: G X G -* G.

Note. X(G) is always a group. It is the group of characters of G. K[G] is thus

isomorphic to the group algebra of X(G) over K.

2.1 Lemma. Lei X be an affine variety defined over K. Then there is a canonical

one-to-one correspondence between actions of the D-group G on X, and direct sum

decompositions K[X] = ®a(EX(C)K[X]a such that K[X]a ■ K[X]ß ç K[X]a + ß for

alla,ß<= X(G).
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Proof. Let R = K[X]. Given R = ® Ra, define p: R -> R ® K[G] by letting

p(x) = x ® a if x g /?a. Plainly, this is the comorphism of an action Cxi-»!

Conversely, given <p: G X A' -> X we have <p*: A -> /? ® /¿[G] which determines

on Ä the structure of a /¿[G]-comodule (i.e. <p* is coassociative and (1 ® e)° <p* = 1,

where e is the augmentation on K[G]). One checks, using these two facts, that if

<p*(a) = LaeX(G)aa ® a then a = lZaeX(G)aa and (aa)ß = aa if a = ß, and 0 other-

wise. Thus, R = eae V(C)^« where /?„ = {a g R\a = aa).    Q.E.D.

The remainder of this section is devoted to the task of sharpening some known

results (see [11]) about Cohen-Macaulay rings and finite D-group actions. I have

assumed throughout that all rings are finitely generated /¿-algebras and that K is an

algebraically closed field.

Let X be an affine variety defined over K, and let G be a finite D-group scheme

such that tp: G X X -» X is an action of G on X. For example, if X is an algebraic

group and G is a closed finite D-subgroup scheme, then G X X -> X, (g,x) -> g ■ x.

is an action of G on X. Let A be the coordinate ring of X.

2.2 Lemma. Let X. A, <p be as above and let AQ = (x g A\q>*(x) = x ® 1}. Then:

(i) A0 is a subalgebra of A.

(ii) The inclusion A0 —> A is an integral extension.

(iii) Aa is an A0-module for all a g A(G).

(iv) If A is a normal domain, so is A0.

(v) A0 is a finitely generated K-algebra.

Proof, (i)-(iii) are straightforward. For (iv) let K and L he the quotient fields of

A0 and A, respectively. Since A is normal it suffices to prove that A0 = A OK. But

A D K is an AXG)-graded subspace of A and K = L0. Thus, A n K = A n L0 ç A0.

(v) follows directly from (ii) and [1, Chapter 5, 1.9].    Q.E.D.

2.3 Proposition. Suppose G X X -» A ¿s an action of the finite D-group G on the

normal affine variety X. If X/G = Spec(/10) is smooth, then X is Cohen-Macaulay.

Proof. By assumption A is a normal domain and A0 -> A is a regular subalgebra.

By (2.2), A is a finite /l0-module, and then by [1, Chapter 7, 4.8] it is actually

reflexive. Since A splits up as ©     v ^, A„, each summand A „is reflexive. Consider
' * aeA(O)     " "

now any nonzero Aa, and choose 0 * x in it. Suppose a has order n in X(G). Then

the map j —> x"~ ' • _y is injective and sends Aa into A0. The image is an ideal that is

reflexive and hence is divisorial [1, Chapter 7, 4.2]. But by assumption AQ is regular,

and hence all its divisorial ideals are projective [1, Chapter 7, 4.7]. Thus, each Aa is

projective and so A is projective. In particular, A is flat over A0. This implies that A

is Cohen-Macaulay [12, Chapter 4, D].    Q.E.D.

The following well-known result is also needed in the proof of the main theorem

(3.2).

2.4 Proposition. Suppose X is an irreducible, affine, Cohen-Macaulay variety and

G X X -> X is an action of the finite D-group on X. Then X/G is Cohen-Macaulay.
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Proof. Let A = K[X] and A() = K[X/G], A is Cohen-Macaulay as an /(-module

and thus, as an A „-module. But A splits up as Alx@ T,a<=XiG)\¡nyAa. Thus, each

summand, in particular A0, is a Cohen-Macaulay /(„-module.    Q.E.D.

3. The main results.

3.1 Proposition. Let G be one of the groups SI 2(K ) X K*, Gl2(/¿) or PGl2(/¿) X

K*. and suppose E is an irreducible, normal, algebraic monoid with 0 and unit group G.

Then there exists a commutative diagram of algebraic monoids with R = Yind K(K2):

h
X       ~*      R

v I I

E       ->       Y

Furthermore.

(i) all morphisms are finite and dominant,

(ii) the kernel of each morphism is a finite D-group.

The proof of 3.1 is recorded in [9], The main point is to construct the desired

morphisms v and h, first on the level of maximal D-submonoids, and then globally

using the "big cell" [9, §3] U Q E.

3.2 Theorem. Let E be an irreducible, normal, algebraic monoid with unit group

G = Sl2(/¿) X K*, Gl2(/¿) or PGl2(/¿) X K*. Then E is Cohen-Macaulay.

Proof. Case 1. £ has a 0.

We have, from 3.1, the following commutative diagram with R = EndK(K2):

X     -»     R

I I
E      -+      Y

All morphisms have finite D-group kernels and R is a smooth variety. By 2.3, X is

Cohen-Macaulay and thus, by 2.4, £ is Cohen-Macaulay.

Case 2. E does not have a 0.

We may assume, since groups are smooth, that G c £. By [3, Corollary 1.4], £ has

an idempotent e =*= 1 and from [5, Corollary 2], it follows that e g T, the closure in £

of some maximal torus T of G. Let e0 g £ be the minimal idempotent. Then e() is

fixed by the Weyl group W, so by [7, Theorem 2.3], e0 is in the closure of the identity

component S of ZG, the center of G. Thus, dim(e0£) > 0, since otherwise e0T =

{e0} for all tori (e0 is central and all maximal tori are conjugate), contradicting the

fact that £ does not have a 0. Hence 1(f) = (l,e0) [4, Theorem 3.7]. Let G' = (G,

G). As £ is regular [10], the map m: G' X S -> E, m(x,y) = x • y, is onto, and since

G' is a simple algebraic group, m is finite-to-one. Thus, £ = G U G • e; dim G = 4,

dim(G ■ e) = dim(G') = 3. But since £ is normal, the singular locus has codi-

mension larger than two. Hence, by homogeneity of £ \ G = G • e, £ is actually

nonsingular in this case.    Q.E.D.
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