Cyclic Algebras of Small Exponent

J.-P. Tignol

Abstract. We prove that every cyclic algebra of exponent \(n \) and degree \(mn \) over a field containing a primitive \(nth \) root of unity is similar to a tensor product of at most \(m \) symbols of degree \(n \).

1. Introduction. Let \(F \) be a field containing a primitive \(nth \) root of unity \(\omega \). A central simple \(F \)-algebra of degree \(n \) (i.e. of dimension \(n^2 \)) is called a symbol if it is generated by two elements \(x, y \) subject to the relations \(x^n \in F^*, y^n \in F^* \) and \(yx = \omega xy \) (compare [3, §15]). Merkurjev and Suslin [2] have recently proved that every finite-dimensional central simple \(F \)-algebra of exponent \(n \) (i.e. whose similarity class has order \(n \) in the Brauer group \(Br(F) \)) is similar to a tensor product of symbols of degree \(n \).

The aim of this note is to give a simple proof of this theorem for cyclic algebras, i.e. for central simple algebras which contain a cyclic extension of the center as a maximal commutative subalgebra.

Theorem. Let \(F \) be a field containing a primitive \(nth \) root of unity. Every cyclic \(F \)-algebra of exponent \(n \) and degree \(mn \) is similar to a tensor product of at most \(m \) symbols of degree \(n \).

If \(K \) is an extension of a field \(F \), we denote by \(Br(K/F) \) the kernel of the natural map from \(Br(F) \) to \(Br(K) \) and by \(Br_n(K/F) \) the subgroup of \(Br(K/F) \) which is killed by \(n \).

2. Lemma. Let \(K/F \) be a cyclic field extension and let \(L \) be an intermediate field. Let \(n = [K:L] \). Then, the image of the corestriction map

\[
\text{Cor}_{L/F} : Br(K/L) \to Br(K/F)
\]

is \(Br_n(K/F) \).

Proof. Let \(G \) be the Galois group of \(K \) over \(F \) and let \(\chi \) be a generator of the group \(\text{Hom}(G, \mathbb{Q}/\mathbb{Z}) \) of characters of \(G \). By [6, Corollary 2, p. 211], every element of \(Br(K/F) \) is of the form \((\chi, a) \) for some \(a \in F^* \). (If we denote by \(\sigma \) the generator of \(G \) such that \(\chi(\sigma) = [K:F]^{-1} (\text{mod} \mathbb{Z}) \), then \((\chi, a) \) is the similarity class of the cyclic algebra \((K, \sigma, a) \), with the notations of [1, p. 74].) If \((\chi, a) \) is killed by \(n \), then \((n\chi, a) = 0 \).

Received by the editors December 29, 1982.

1980 Mathematics Subject Classification. Primary 16A16; Secondary 13A20, 12G05.

Key words and phrases. Cyclic algebras, Brauer group of fields.

The author wishes to thank M. Ojanguren for calling [4] to his attention.

©1983 American Mathematical Society

0002-9939/83 $1.00 +$.25 per page

587

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Since the kernel of χ is the Galois group of K over L, we then have $a = N_{L/F}(t)$ for some $t \in L^*$, by [6, Corollary 1, p. 211], whence $(\chi, a) = \text{Cor}_{L/F}(\text{Res}_{L/F} \chi, t)$, by the “projection formula” (see [6, p. 212 or 7, Proposition 4.3.7]). This proves that the image of $\text{Br}(K/L)$ by the corestriction map contains $\text{Br}_n(K/F)$. The converse is clear, since the exponent of $\text{Br}(K/L)$ divides $[K : L] = n$. Q.E.D.

3. Proof of the Theorem. Let K be a cyclic extension of F, of rank mn. The Lemma shows that every element in $\text{Br}_n(K/F)$ is the corestriction of some element in $\text{Br}(K/L)$, where L is the (unique) extension of F of codimension n in K. Since L contains a primitive root of unity, every element in $\text{Br}(K/L)$ is the similarity class of a symbol of degree n and, since $[L : F] = m$, the corestriction of any symbol of degree n over L is similar to the tensor product of at most m symbols of degree n over F, by a theorem of Rosset and Tate [4, §3, Corollary 1]. Q.E.D.

4. Remarks. (1) If n is a product of relatively prime integers $n = n_1 \cdots n_r$, then, by [1, Theorem 7.20], every cyclic algebra A of exponent n is isomorphic to a tensor product $A \cong A_1 \otimes \cdots \otimes A_r$, where A_i is a cyclic algebra of exponent n_i for $i = 1, \ldots, r$. The Theorem above can thus be applied separately to A_1, \ldots, A_r, this yields a better bound for the number of factors in a decomposition of A as a tensor product of symbols (up to similarity). If n is a power of a prime integer, it is not known whether the bound is the best possible. (It is obviously so for $m = 1$ or 2.)

(2) For $n = 2$, the Theorem above has also been proved by Rowen [5, Theorem 3.7], under the extra hypothesis that F contains a primitive $2m$th root of unity. His techniques are different and do not yield a bound on the number of symbols.

REFERENCES

Institut de Mathématique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium