On a problem of Banach
HTML articles powered by AMS MathViewer
- by Andrzej Pelc and Karel Prikry
- Proc. Amer. Math. Soc. 89 (1983), 608-610
- DOI: https://doi.org/10.1090/S0002-9939-1983-0718982-7
- PDF | Request permission
Abstract:
Assuming the continuum hypothesis, we obtain a translation invariant version of the following result of E. Grzegorek: There are two countably generated $\sigma$-algebras on the interval [0, 1] such that both carry a nonatomic countably additive probability measure, but the $\sigma$-algebra generated by their union does not carry any such measure.References
- S. Banach, Sur les suites d’ensembles excluant l’existence d’une mesure, Colloq. Math. 1 (1948), 103–108 (French). MR 25547, DOI 10.4064/cm-1-2-103-108
- E. Grzegorek, Remarks on $\sigma$-fields without continuous measures, Colloq. Math. 39 (1978), no. 1, 73–75. MR 507265, DOI 10.4064/cm-39-1-73-75
- Edward Grzegorek, Solution of a problem of Banach on $\sigma$-fields without continuous measures, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), no. 1-2, 7–10 (1981) (English, with Russian summary). MR 616191
- Shizuo Kakutani and John C. Oxtoby, Construction of a non-separable invariant extension of the Lebesgue measure space, Ann. of Math. (2) 52 (1950), 580–590. MR 37335, DOI 10.2307/1969435
- B. V. Rao, On discrete Borel spaces and projective sets, Bull. Amer. Math. Soc. 75 (1969), 614–617. MR 242684, DOI 10.1090/S0002-9904-1969-12264-0 W. Sierpiński, Sur les translations des ensembles linéaires, Fund. Math. 19 (1932), 22-28. —, Hypothese du continu, Chelsea, New York, 1956.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 608-610
- MSC: Primary 28C10; Secondary 04A20, 04A30
- DOI: https://doi.org/10.1090/S0002-9939-1983-0718982-7
- MathSciNet review: 718982