## On the strong unicity of best Chebyshev approximation of differentiable functions

HTML articles powered by AMS MathViewer

- by András Kroó PDF
- Proc. Amer. Math. Soc.
**89**(1983), 611-617 Request permission

## Abstract:

Let $X$ be a normed linear space, ${U_n}$ an $n$-dimensional Chebyshev subspace of $X$. For $f \in X$ denote by $p(f) \in {U_n}$ its best approximation in ${U_n}$. The problem of strong unicity consists in estimating how fast the nearly best approximants $g \in {U_n}$ satisfying $\left \| {f - g} \right \| \leqslant \left \| {f - p(f)} \right \| + \delta$ approach $p(f)$ as $\delta \to 0$. In the present note we study this problem in the case when $X = {C^r}[a,b]$ is the space of $r$-times continuously differentiable functions endowed with the supremum norm $(1 \leqslant r \leqslant \infty )$.## References

- B. O. Björnestȧl,
*Local Lipschitz continuity of the metric projection operator*, Approximation theory (Papers, VIth Semester, Stefan Banach Internat. Math. Center, Warsaw, 1975) Banach Center Publ., vol. 4, PWN, Warsaw, 1979, pp. 43–53. MR**553755** - A. L. Garkavi,
*Dimensionality of polyhedra of best approximation for differentiable functions*, Izv. Akad. Nauk SSSR. Ser. Mat.**23**(1959), 93–114 (Russian). MR**0104957** - András Kroó,
*On strong unicity of $L_{1}$-approximation*, Proc. Amer. Math. Soc.**83**(1981), no. 4, 725–729. MR**630044**, DOI 10.1090/S0002-9939-1981-0630044-4 - András Kroó,
*On the unicity of best Chebyshev approximation of differentiable functions*, Acta Sci. Math. (Szeged)**47**(1984), no. 3-4, 377–389. MR**783312** - D. J. Newman and Harold S. Shapiro,
*Some theorems on Čebyšev approximation*, Duke Math. J.**30**(1963), 673–681. MR**156138**, DOI 10.1215/S0012-7094-63-03071-0 - Ivan Singer,
*Best approximation in normed linear spaces by elements of linear subspaces*, Die Grundlehren der mathematischen Wissenschaften, Band 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. Translated from the Romanian by Radu Georgescu. MR**0270044**, DOI 10.1007/978-3-662-41583-2

## Additional Information

- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**89**(1983), 611-617 - MSC: Primary 41A52
- DOI: https://doi.org/10.1090/S0002-9939-1983-0718983-9
- MathSciNet review: 718983