Quaternion Kaehlerian manifolds isometrically immersed in Euclidean space
HTML articles powered by AMS MathViewer
- by M. Barros and F. Urbano
- Proc. Amer. Math. Soc. 89 (1983), 657-660
- DOI: https://doi.org/10.1090/S0002-9939-1983-0718992-X
- PDF | Request permission
Abstract:
Let $M$ be a complete $4n$-dimensional quaternion Kaehlerian manifold isometrically immersed in the $(4n + d)$-dimensional Euclidean space. In this note we prove that if $d < n$, then $M$ is a Riemannian product ${Q^m} \times P$, where ${Q^m}$ is the $m$-dimensional quaternion Euclidean space $(m \geqslant n - d)$ and $P$ is a Ricci flat quaternion Kaehlerian manifold.References
- Jeff Cheeger and Detlef Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72), 119–128. MR 303460
- Chih Chy Fwu, Kaehler manifolds isometrically immersed in Euclidean space, J. Differential Geometry 14 (1979), no. 1, 99–103 (1980). MR 577882
- Shigeru Ishihara, Quaternion Kählerian manifolds, J. Differential Geometry 9 (1974), 483–500. MR 348687
- John Douglas Moore, Isometric immersions of riemannian products, J. Differential Geometry 5 (1971), 159–168. MR 307128
- John Douglas Moore, Conformally flat submanifolds of Euclidean space, Math. Ann. 225 (1977), no. 1, 89–97. MR 431046, DOI 10.1007/BF01364894
- J. D. Pérez, F. G. Santos, and F. Urbano, On the axioms of planes in quaternionic geometry, Ann. Mat. Pura Appl. (4) 130 (1982), 215–221. MR 663972, DOI 10.1007/BF01761496
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 657-660
- MSC: Primary 53C42; Secondary 53C55
- DOI: https://doi.org/10.1090/S0002-9939-1983-0718992-X
- MathSciNet review: 718992